
Symantec AntiVirus™
Scan Engine
Software Developer’s Guide

Symantec AntiVirus™ Scan Engine
Software Developer’s Guide

The software described in this book is furnished under a license agreement and may be
used only in accordance with the terms of the agreement.

Documentation version 4.1

Copyright Notice
Copyright © 2000-2003 Symantec Corporation.

All Rights Reserved.

Any technical documentation that is made available by Symantec Corporation is the
copyrighted work of Symantec Corporation and is owned by Symantec Corporation.

NO WARRANTY. The technical documentation is being delivered to you
AS-IS, and Symantec Corporation makes no warranty as to its accuracy or use. Any use of
the technical documentation or the information contained therein is at the risk of the user.
Documentation may include technical or other inaccuracies or typographical errors.
Symantec reserves the right to make changes without prior notice.

No part of this publication may be copied without the express written permission of
Symantec Corporation, 20330 Stevens Creek Blvd., Cupertino, CA 95014.

Trademarks
Symantec and the Symantec logo are U.S. registered trademarks of Symantec Corporation.
CarrierScan Server, Bloodhound, LiveUpdate, NAVEX, Symantec AntiVirus, and
Symantec Security Response are trademarks of Symantec Corporation. Sun, Sun
Microsystems, the Sun logo, Sun Enterprise, Java, Ultra, and Solaris are trademarks or
registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
SPARC is a registered trademark of SPARC International, Inc. Products bearing SPARC
trademarks are based on an architecture developed by Sun Microsystems, Inc. Microsoft,
ActiveX, Windows, Windows NT, and the Windows Logo are registered trademarks of
Microsoft Corporation in the United States and other countries. Intel and Pentium are
registered trademarks of Intel Corporation. Red Hat is a registered trademark of Red Hat
Software, Inc., in the United States and other countries. Linux is a registered trademark of
Linus Torvalds. NetApp, Data ONTAP, NetCache, Network Appliance, and Web Filer are
registered trademarks or trademarks of Network Appliance, Inc., in the United States and
other countries. Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems
Incorporated. THIS PRODUCT IS NOT ENDORSED OR SPONSORED BY ADOBE
SYSTEMS INCORPORATED, PUBLISHERS OF ADOBE ACROBAT.

Other brands and product names mentioned in this manual may be trademarks or
registered trademarks of their respective companies and are hereby acknowledged.

Portions of this document have been reprinted from the ICAP specification, RFC 3507
(April 2003). This document is Copyright © 2003 The Internet Society. All Rights
Reserved. This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the
Internet Society or other Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for copyrights defined in the
Internet Standards process must be followed, or as required to translate it into languages
other than English.

The limited permissions granted above are perpetual and will not be revoked by the
Internet Society or its successors or assigns.

The Internet Society disclaimer: “This document and the information contained herein is
provided on an “AS IS” basis and THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE
OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.”

A modified version of a freeware SNMP library is used in this software. This software is
Copyright © 1988, 1989 by Carnegie Mellon University. All Rights Reserved. Permission to
use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies
and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of CMU not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior permission.

CMU software disclaimer: “CMU DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL CMU BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.”

A set of Unicode handling libraries is used in this software. This software is Copyright ©
1995-2002 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, provided that the above copyright notice(s) and this
permission notice appear in all copies of the Software and that both the above copyright
notice(s) and this permission notice appear in supporting documentation. Except as
contained in this notice, the name of a copyright holder shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written
authorization of the copyright holder.

IBM software disclaimer: “THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN
NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.”

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

SYMANTEC SOFTWARE LICENSE AGREEMENT
ENTERPRISE ANTIVIRUS SOFTWARE
THIS LICENSE AGREEMENT SUPERSEDES THE LICENSE
AGREEMENT CONTAINED IN THE SOFTWARE INSTALLATION
AND DOCUMENTATION.
SYMANTEC CORPORATION AND/OR ITS SUBSIDIARIES
(“SYMANTEC”) IS WILLING TO LICENSE THE SOFTWARE TO
YOU AS AN INDIVIDUAL, THE COMPANY, OR THE LEGAL
ENTITY THAT WILL BE UTILIZING THE SOFTWARE
(REFERENCED BELOW AS “YOU OR YOUR”) ONLY ON THE
CONDITION THAT YOU ACCEPT ALL OF THE TERMS OF THIS
LICENSE AGREEMENT. READ THE TERMS AND CONDITIONS
OF THIS LICENSE AGREEMENT CAREFULLY BEFORE USING
THE SOFTWARE. THIS IS A LEGAL AND ENFORCEABLE
CONTRACT BETWEEN YOU AND THE LICENSOR. BY OPENING
THIS PACKAGE, BREAKING THE SEAL, CLICKING ON THE
“AGREE” OR “YES” BUTTON OR OTHERWISE INDICATING
ASSENT ELECTRONICALLY, OR LOADING THE SOFTWARE,
YOU AGREE TO THE TERMS AND CONDITIONS OF THIS
AGREEMENT. IF YOU DO NOT AGREE TO THESE TERMS AND
CONDITIONS, CLICK ON THE “I DO NOT AGREE” OR “NO”
BUTTON, OR OTHERWISE INDICATE REFUSAL AND MAKE NO
FURTHER USE OF THE SOFTWARE.

1. LICENSE:
The software and documentation that accompanies this license
(collectively the “Software”) is the proprietary property of Symantec or
its licensors and is protected by copyright law. While Symantec
continues to own the Software, You will have certain rights to use the
quantity of the Software for which You have paid the applicable license
fees after Your acceptance of this license. This license governs any
releases, revisions, or enhancements to the Software that the Licensor
may furnish to You. Except as may be modified by an applicable
Symantec license certificate, license coupon, or license key (each a
“License Module”) that accompanies, precedes, or follows this license,
Your rights and obligations with respect to the use of licensed copies of
this Software are as follows:

YOU MAY:
A. use the Software in the manner described in the Software
documentation and in accordance with the License Module. If the
Software is part of an offering containing multiple Software titles, the
aggregate number of copies You may use may not exceed the aggregate
number of licenses indicated in the License Module, as calculated by
any combination of licensed Software titles in such offering. Your
License Module shall constitute proof of Your right to make such
copies. If no License Module accompanies, precedes, or follows this
license, You may make one copy of the Software You are authorized to
use on a single machine;
B. make one copy of the Software for archival purposes, or copy the
Software onto the hard disk of Your computer and retain the original
for archival purposes;
C. use the Software on a network or to protect a network such as at the
gateway or on a mail server, provided that You have a license to the
Software for each computer that can access the network;
D. after written consent from Symantec, transfer the Software on a
permanent basis to another person or entity, provided that You retain
no copies of the Software and the transferee agrees to the terms of this
license; and
E. use the Software in accordance with any additional permitted uses
set forth in Section 8 below.

YOU MAY NOT:
A. copy the printed documentation which accompanies the Software;

B. sublicense, rent or lease any portion of the Software; reverse
engineer, decompile, disassemble, modify, translate, make any attempt
to discover the source code of the Software, or create derivative works
from the Software;
C. use a previous version or copy of the Software after You have
received a disk replacement set or an upgraded version. Upon
upgrading the Software, all copies of the prior version must be
destroyed;
D. use a later version of the Software than is provided herewith unless
You have purchased corresponding maintenance and/or upgrade
insurance or have otherwise separately acquired the right to use such
later version;
E. use, if You received the software distributed on media containing
multiple Symantec products, any Symantec software on the media for
which You have not received a permission in a License Module;
F. use the Software in any manner not authorized by this license; nor
G. use the Software in any manner that contradicts any additional
restrictions set forth in Section 8 below.

2. CONTENT UPDATES:
Certain Symantec software products utilize content that is updated
from time to time (antivirus products utilize updated virus definitions;
content filtering products utilize updated URL lists; some firewall
products utilize updated firewall rules; vulnerability assessment
products utilize updated vulnerability data, etc.; collectively, these are
referred to as “Content Updates”). You may obtain Content Updates
for any period for which You have purchased upgrade insurance for
the product, entered into a maintenance agreement that includes
Content Updates, or otherwise separately acquired the right to obtain
Content Updates. This license does not otherwise permit You to obtain
and use Content Updates.

3. LIMITED WARRANTY:
Symantec warrants that the media on which the Software is distributed
will be free from defects for a period of sixty (60) days from the date of
delivery of the Software to You. Your sole remedy in the event of a
breach of this warranty will be that Symantec will, at its option, replace
any defective media returned to Symantec within the warranty period
or refund the money You paid for the Software. Symantec does not
warrant that the Software will meet Your requirements or that
operation of the Software will be uninterrupted or that the Software
will be error-free.
THE ABOVE WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL
OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED,
INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS. THIS WARRANTY GIVES YOU SPECIFIC LEGAL
RIGHTS. YOU MAY HAVE OTHER RIGHTS, WHICH VARY FROM
STATE TO STATE AND COUNTRY TO COUNTRY.

4. DISCLAIMER OF DAMAGES:
SOME STATES AND COUNTRIES, INCLUDING MEMBER
COUNTRIES OF THE EUROPEAN ECONOMIC AREA, DO NOT
ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE BELOW
LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW
AND REGARDLESS OF WHETHER ANY REMEDY SET FORTH
HEREIN FAILS OF ITS ESSENTIAL PURPOSE, IN NO EVENT WILL
SYMANTEC BE LIABLE TO YOU FOR ANY SPECIAL,
CONSEQUENTIAL, INDIRECT OR SIMILAR DAMAGES,
INCLUDING ANY LOST PROFITS OR LOST DATA ARISING OUT

OF THE USE OR INABILITY TO USE THE SOFTWARE EVEN IF
SYMANTEC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
IN NO CASE SHALL SYMANTEC'S LIABILITY EXCEED THE
PURCHASE PRICE FOR THE SOFTWARE. The disclaimers and
limitations set forth above will apply regardless of whether You accept
the Software.

5. U.S. GOVERNMENT RESTRICTED RIGHTS:
RESTRICTED RIGHTS LEGEND. All Symantec products and
documentation are commercial in nature. The software and software
documentation are “Commercial Items”, as that term is defined in 48
C.F.R. section 2.101, consisting of “Commercial Computer Software”
and “Commercial Computer Software Documentation”, as such terms
are defined in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R.
section 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and
48 C.F.R. section 227.7202, as applicable. Consistent with 48 C.F.R.
section 12.212, 48 C.F.R. section 252.227-7015, 48 C.F.R. section
227.7202 through 227.7202-4, 48 C.F.R. section 52.227-14, and other
relevant sections of the Code of Federal Regulations, as applicable,
Symantec's computer software and computer software documentation
are licensed to United States Government end users with only those
rights as granted to all other end users, according to the terms and
conditions contained in this license agreement. Manufacturer is
Symantec Corporation, 20330 Stevens Creek Blvd., Cupertino, CA
95014, United States of America.

6. EXPORT REGULATION:
Export or re-export of this Software is governed by the laws and
regulations of the United States and import laws and regulations of
certain other countries. Export or re-export of Software to any entity
on the Denied Parties List and other lists promulgated by various
agencies of the United States Federal Government is strictly prohibited.

7. GENERAL:
If You are located in North America or Latin America, this Agreement
will be governed by the laws of the State of California, United States of
America. Otherwise, this Agreement will be governed by the laws of
England. This Agreement and any related License Module is the entire
agreement between You and Symantec relating to the Software and: (i)
supersedes all prior or contemporaneous oral or written
communications, proposals and representations with respect to its
subject matter; and (ii) prevails over any conflicting or additional
terms of any quote, order, acknowledgment or similar
communications between the parties. This Agreement shall terminate
upon Your breach of any term contained herein and You shall cease
use of and destroy all copies of the Software. The disclaimers of
warranties and damages and limitations on liability shall survive
termination. The original of this Agreement has been written in
English and English is the governing language of this Agreement. This
Agreement may only be modified by a License Module which
accompanies this license or by a written document which has been
signed by both You and Symantec. Should You have any questions
concerning this Agreement, or if You desire to contact Symantec for
any reason, please write to: (i) Symantec Customer Service, 555
International Way, Springfield, OR 97477, U.S.A. or (ii) Symantec
Customer Service Center, PO BOX 5689, Dublin 15, Ireland.

8. ADDITIONAL RESTRICTIONS FOR SPECIFIED
SOFTWARE:
A. If the Software You have licensed is a specified Symantec
AntiVirus™ for a third-party product or platform, You may only use
that specified Software with the corresponding product or platform.

You may not allow any computer to access the Software other than a
computer using the specified product or platform. In the event that
You wish to use the Software with a certain product or platform for
which there is no specified Software, You may use the Symantec
AntiVirus Scan Engine.
B. If the Software you have licensed is Symantec AntiVirus for
NetApp® Filer, the following additional use(s) and restriction(s) apply:
i) You may use the Software only with a NetApp Filer server;
ii) You may use the Software only with files accessed through a NetApp
Filer; and
iii) You may not use the Software on a server that exceeds the specified
capacity set forth in Your License Module.
C. If the Software you have licensed is Symantec AntiVirus for Web
Servers, the following additional use(s) and restriction(s) apply:
i) You may use the Software only with files that are received from third
parties through a Web server;
ii) You may use the Software only with files received from less than
10,000 unique third parties per month; and
iii) You may not charge or assess a fee for use of the Software for Your
internal business.
D. If the Software You have licensed is Symantec Web Security,
independent of version or operating platform designation, upon the
expiration of Your right to acquire Content Updates, the filtering
definitions corresponding with all previous Content Updates will be
entirely deleted and will no longer be available for use with the
Software. Upon the expiration of Your right to acquire Content
Updates, access to updated virus definitions will no longer be available.
However, You may continue to use virus definitions previously
acquired.
E. If the Software You have licensed is Symantec AntiVirus Corporate
Edition, You may not use the Software on or with devices on Your
network running embedded operating systems specifically supporting
network-attached storage functionality without separately licensing a
version of such Software specifically licensed for a specific type of
network-attached storage device under a License Module.
F. If the Software You have licensed is Symantec AntiVirus for EMC®
Celerra™ File Server, You may use the Software only with EMC Celerra
servers and only if You have a license to the Software for each Celerra
AntiVirus Agent (CAVA) associated with each such server. You may
not allow any computer to access the Software other than an EMC
Celerra server.
NetApp is a registered trademark of Network Appliance, Inc., in the
U.S. and other countries.
EMC and Celerra are trademarks or registered trademarks of EMC
Corporation in the U.S. and other countries.

Contents
Chapter 1 Getting started
About the Symantec AntiVirus Scan Engine ... 10
About the software developer’s guide .. 10
What’s new in version 4.1.0 of the software developer’s guide 11
Integrating with the Symantec AntiVirus Scan Engine 11

About ICAP ... 11
About the API .. 12
About the change from the native protocol to ICAP 12
About other protocols ... 12

About licensing ... 13
Considerations for implementation .. 13

Deciding how to implement scanning ... 13
Maximizing performance .. 14
About automatic load balancing .. 14

Where to start .. 15

Chapter 2 Configuring the Symantec AntiVirus Scan Engine for
custom integrations
Considerations for custom integration .. 18
Configuring the scan engine to use ICAP .. 18
Specifying file types to scan .. 20
Changing an ICAP response ... 24

Chapter 3 Constructing clients using ICAP 1.0
How ICAP works .. 28
Finding more information on ICAP .. 28
About ICAP messages ... 29

About request messages .. 29
About response messages .. 31
About encapsulated messages ... 31

About the antivirus scanning process .. 32
Determining which services are supported ... 33

Querying the AVSCAN service ... 33
OPTIONS response codes ... 34
OPTIONS response headers ... 35

8 Contents
Sending files for scanning ...36
Sending portions of files for preview ..36
Allowing no content responses ...38
Interpreting RESPMOD response messages ...38

Chapter 4 Constructing clients using the client API library
General procedure for scanning ...50
Compiling and linking ..50

Windows 2000 Server/Advanced Server ...51
Solaris ...52
Red Hat Linux ..53
Exceptions and error handling ..53

API functions ...53
File-based scanning ..54
Stream-based scanning ..54
ScanClientStartUp ...54
ScanClientScanFile ...57
ScanResultGetNumProblems ..61
ScanResultGetProblem ..62
SC_DECODE_DISPOSITION ..64
ScanResultsFree ..65
ScanClientShutDown ..65
ScanClientStreamStart ...66
ScanClientStreamSendBytes ..68
ScanClientStreamFinish ..69
ScanClientStreamAbort ...71

Appendix A Using the API
About the sample code ..74
Sample code ...74

Index

Chapter
 1
Getting started

This chapter includes the following topics:

■ About the Symantec AntiVirus Scan Engine

■ About the software developer’s guide

■ What’s new in version 4.1.0 of the software developer’s guide

■ Integrating with the Symantec AntiVirus Scan Engine

■ About licensing

■ Considerations for implementation

■ Where to start

10 Getting started
About the Symantec AntiVirus Scan Engine
About the Symantec AntiVirus Scan Engine
The Symantec AntiVirus Scan Engine is a network-accessible virus scanning and
repair engine. The Symantec AntiVirus Scan Engine features all of the key virus-
scanning technologies available in the complete line of Symantec antivirus
products, making the Symantec AntiVirus Scan Engine one of the most effective
virus solutions available for detecting and preventing virus attacks.

The Symantec AntiVirus Scan Engine provides virus scanning and repair
capabilities for any application on an IP network, regardless of platform, using
one of several supported protocols. Any application can pass files to the Symantec
AntiVirus Scan Engine for scanning, which in turn scans the files for viruses and
returns a cleaned file if necessary.

For more information about supported virus detection technologies and virus
protection, see the Symantec AntiVirus Scan Engine Implementation Guide.

About the software developer’s guide
Software developers can use the information provided in the Symantec AntiVirus
Scan Engine Software Developer’s Guide to create client applications that let third-
party applications integrate with the Symantec AntiVirus Scan Engine for virus
scanning and repair services. Client applications can communicate with the
Symantec AntiVirus Scan Engine using one of several supported protocols.
However, the only protocol that is supported in the software developer’s guide is
the Internet Content Adaptation Protocol (ICAP) version 1.0 presented in RFC
3507 (April 2003).

11Getting started
What’s new in version 4.1.0 of the software developer’s guide
What’s new in version 4.1.0 of the software
developer’s guide

The Symantec AntiVirus Scan Engine Software Developer’s Guide includes the
following new features:

■ The underlying protocol in the Symantec AntiVirus Scan Engine application
programming interface (API) has been changed to ICAP 1.0. Prior to this
release, the underlying protocol in the Symantec AntiVirus Scan Engine API
C library was the Symantec AntiVirus Scan Engine native protocol.

See “About the change from the native protocol to ICAP” on page 12.

■ The functionality that permits a client application to pass a full path rather
than the actual file to the Symantec AntiVirus Scan Engine has changed
temporarily for this release. The normal, optimized functionality will be
restored in the next release.

See “Maximizing performance” on page 14.

Integrating with the Symantec AntiVirus Scan Engine
Using ICAP as the communication protocol, software developers can create client
applications (connectors) that let third-party applications integrate with the
Symantec AntiVirus Scan Engine for virus scanning and repair services.

You can create a custom integration in one of two ways using ICAP:

■ Use the Symantec AntiVirus Scan Engine application programming interface
(API), which is provided as part of this software developer’s kit.

The underlying protocol for the scan engine API is ICAP 1.0.

See “Constructing clients using the client API library” on page 49.

■ Construct your own ICAP 1.0 client for the Symantec AntiVirus Scan
Engine.

See “Constructing clients using ICAP 1.0” on page 27.

About ICAP
ICAP is a lightweight protocol that was originally created for executing a remote
procedure call on HTTP messages. ICAP is part of an evolving architecture that
lets corporations, carriers, and Internet service providers (ISPs) dynamically scan,
change, and augment data as it flows through ICAP servers. The protocol lets
ICAP clients pass data to ICAP servers for adaptation (some sort of
transformation or other processing, such as virus scanning). The server executes

12 Getting started
Integrating with the Symantec AntiVirus Scan Engine
its transformation service on the data and responds to the client, possibly with
modified content.

In a typical integration for processing HTTP traffic, a caching proxy server
retrieves the requested information from the Web. At the same time, it caches the
information (stores a copy on disk) and, where possible, serves multiple requests
for the same Web content from the cache. A caching proxy server can use ICAP
to communicate with the Symantec AntiVirus Scan Engine and request that
content that is retrieved from the Web be scanned and repaired.

About the API
You can use the client-side API C library to configure an application to pass files
to the Symantec AntiVirus Scan Engine for scanning. The API includes 12
libraries: both static and dynamic libraries for each supported platform. The API
library consists of 10 functions that provide scanning and repair services to client
applications. The Symantec AntiVirus Scan Engine API C library is available for
Red Hat Linux 7.2 and later (using either gcc 2.95 or 3.2), Solaris 7 and later
(using either gcc 2.95 or 3.2), and Windows 2000 Server/Advanced Server (using
either Microsoft Visual Studio 6 or 7). The provided C header file is included.

See “Configuring the Symantec AntiVirus Scan Engine for custom integrations”
on page 17 and “Constructing clients using the client API library” on page 49.

About the change from the native protocol to ICAP
In version 4.1.0 of the software developer’s guide, the underlying protocol in the
Symantec AntiVirus Scan Engine application programming interface (API) has
been changed to ICAP 1.0. Prior to this release, the underlying protocol in the
Symantec AntiVirus Scan Engine API C library was the Symantec AntiVirus Scan
Engine native protocol. To the degree possible, the change is transparent to the
client application.

If you have an existing custom integration using the native protocol, the native
protocol libraries can be found in the Scan_Engine_Integration_Kit/Old_API/
directory in the distribution package, but you should plan to change to ICAP 1.0.

About other protocols
The Symantec AntiVirus Scan Engine supports its own native protocol. This
protocol is no longer supported in the software developer’s kit. The Symantec
AntiVirus Scan Engine also supports the ICAP 0.95 and Remote Procedure Call
(RPC) 1.0 and 1.1 for NetApp Filer. These protocols are proprietary
implementations and are not documented by Symantec.

13Getting started
About licensing
About licensing
Key features for the Symantec AntiVirus Scan Engine, including antivirus
scanning and virus definitions updates, are activated by license. After you install
the Symantec AntiVirus Scan Engine, you install licenses through the Symantec
AntiVirus Scan Engine administrative interface. When a license expires (for
example, when a virus definitions product update subscription expires), a new
license must be installed to renew the subscription. When no license is installed,
functionality is limited. A license affects the relevant behavior only. For example,
when no antivirus scanning license is installed, an administrator can access the
administrative interface to view and modify settings and run reports, but no
antivirus scanning is performed. When no virus definitions update license is
installed, new virus definitions updates are not downloaded to keep protection
current.

For more information about licensing, see the Symantec AntiVirus Scan Engine
Implementation Guide.

Considerations for implementation
The Symantec AntiVirus Scan Engine can be easily implemented in an existing
infrastructure. The Symantec AntiVirus Scan Engine runs on Solaris, Red Hat
Linux, and Windows 2000 Server/Advanced Server platforms, and can be run on
the same or a different computer than the client application.

You should consider a number of issues when you develop a client application for
integration with the Symantec AntiVirus Scan Engine for virus scanning and
repair services.

Deciding how to implement scanning
You can create a custom integration in one of two ways using ICAP:

■ Use the Symantec AntiVirus Scan Engine application programming interface
(API).

See “Constructing clients using the client API library” on page 49.

■ Construct your own ICAP client for the Symantec AntiVirus Scan Engine
using ICAP 1.0.

See “Constructing clients using ICAP 1.0” on page 27.

14 Getting started
Considerations for implementation
The Symantec AntiVirus Scan Engine API supports both file-based and stream-
based scanning.

See “File-based scanning” on page 54.

See “Stream-based scanning” on page 54.

Maximizing performance
In a typical configuration, files are passed to the Symantec AntiVirus Scan Engine
via a socket over the network because the scan engine is running on a separate
computer. Depending on the network setup, client applications (applications that
have been configured to pass files to the scan engine for scanning) can pass a full
path rather than the actual file to the Symantec AntiVirus Scan Engine for
improved performance.

Note: This functionality has changed temporarily for the 4.1.0 release of the API.
Although client applications can pass a full path rather than the actual file to the
Symantec AntiVirus Scan Engine, for this release the API passes all data that is to
be scanned to the scan engine regardless of the configuration.

In the previous release, files to be scanned could be located on a drive that can be
mounted over the network, such as a shared drive in Windows or a network file
system (NFS) drive. If the client application and the scan engine had access to a
shared directory, the client application could place the file in the shared directory
and pass the full path to the Symantec AntiVirus Scan Engine, which could access
the file directly. For cases in which the client application ran on the same
computer as the Symantec AntiVirus Scan Engine, the client application could
pass the file name to the scan engine, and the scan engine could open the file and
scan it in place on the computer.

For the current release, the API continues to accept all parameters, and the
exchange between the client application and the Symantec AntiVirus Scan Engine
has not changed. However, even if you have specified only a full path, all data to
be scanned is passed in its entirety to the scan engine for scanning. If you have an
existing implementation, you do not need to change anything. If you are creating
a custom integration, set up the client application to pass a full path to the scan
engine. The normal, optimized functionality will be restored in a future release.

About automatic load balancing
The Symantec AntiVirus Scan Engine API provides scheduling across any
number of computers that are running the Symantec AntiVirus Scan Engine.
Client applications that pass files to the scan engine benefit from load-balanced

15Getting started
Where to start
virus scanning without any additional effort. When multiple scan engines are
used, the API determines the appropriate Symantec AntiVirus Scan Engine to
receive the next file to be scanned, based on the scheduling algorithm.

If a Symantec AntiVirus Scan Engine is unreachable or stops responding during a
scan, another scan engine is called and the faulty scan engine is taken out of
rotation for a period of time (30 seconds is the default). If all of the scan engines
are out of rotation, the faulty scan engines are called again. The API does not stop
trying to contact the scan engines unless five engines do not respond or it appears
that a file that is being scanned might have caused more than one engine to stop
responding.

Where to start
Complete the following steps to configure client applications to use ICAP 1.0 to
pass files to the scan engine for scanning:

■ Become familiar with the design and features of the software.

In addition to this guide, see the Symantec AntiVirus Scan Engine
Implementation Guide.

■ Decide how to deploy the Symantec AntiVirus Scan Engine on your network
to meet your specific requirements.

See “Considerations for implementation” on page 13.

■ Install and configure the Symantec AntiVirus Scan Engine appropriately to
use ICAP as the communication protocol.

See the Symantec AntiVirus Scan Engine Implementation Guide.

■ Install the API libraries.

This guide provides the necessary information.

■ Configure the client applications that will send files to the Symantec
AntiVirus Scan Engine for scanning.

16 Getting started
Where to start

Chapter
 2
Configuring the Symantec
AntiVirus Scan Engine for
custom integrations

This chapter includes the following topics:

■ Considerations for custom integration

■ Configuring the scan engine to use ICAP

■ Specifying file types to scan

■ Changing an ICAP response

18 Configuring the Symantec AntiVirus Scan Engine for custom integrations
Considerations for custom integration
Considerations for custom integration
The Symantec AntiVirus Scan Engine is designed to be easily integrated into any
environment to provide antivirus scanning for any application. Client
applications are configured to pass files to the Symantec AntiVirus Scan Engine,
which scans the files for viruses and returns cleaned files if necessary.

The Symantec AntiVirus Scan Engine supports custom integration, in which a
software developer creates a client application (connector) that provides virus
scanning and repair services for a third-party application. The client application
communicates with the Symantec AntiVirus Scan Engine using ICAP 1.0.

The Symantec AntiVirus Scan Engine must be configured to support the custom
integration. This includes selecting ICAP as the communication protocol,
configuring the ICAP-specific options, and selecting the types of files to scan.

You must decide how you plan to configure the client application and the scan
engine to ensure that the appropriate files are scanned for viruses. This decision
can depend on the capabilities of the third-party application. For example, the
client application can decide what to scan and pass only the appropriate files to
the scan engine. In other cases, the client application can be configured to pass all
files to the scan engine, and the Symantec AntiVirus Scan Engine can be
configured to scan those file types that are likely to contain viruses.

The client application must be configured to communicate with the Symantec
AntiVirus Scan Engine and to handle the results that are returned from the scan
engine. How the application is configured to handle the results that are returned
from the scan engine can depend on the capabilities of the third-party
application, including blocking access to infected files, quarantining unrepairable
files, and so on.

See “Constructing clients using the client API library” on page 49 or
“Constructing clients using ICAP 1.0” on page 27.

Configuring the scan engine to use ICAP
The Symantec AntiVirus Scan Engine must be configured to use ICAP to
communicate with clients that are running either the proprietary version 0.95 of
ICAP or version 1.0 (RFC 3507, April 2003). Any appropriate client can use ICAP
to communicate with the Symantec AntiVirus Scan Engine to request the
scanning and repair of files.

You can configure multiple client applications that use different versions of ICAP
to pass files to a single Symantec AntiVirus Scan Engine. When you select ICAP as
the communication protocol for the scan engine, the scan engine determines the

19Configuring the Symantec AntiVirus Scan Engine for custom integrations
Configuring the scan engine to use ICAP
appropriate version of ICAP to use based on the header data passed in from the
client application.

If you select ICAP as the protocol to be used by the Symantec AntiVirus Scan
Engine, you must configure several ICAP-specific options. You must also
configure the ICAP client to work with the Symantec AntiVirus Scan Engine.
Table 2-1 details the information that must be provided.

Table 2-1 Protocol-specific options for ICAP

Option Description

Scan Engine bind
address

By default, the Symantec AntiVirus Scan Engine binds to all
interfaces. You can restrict access to a specific interface by entering
the appropriate bind address. You can use 127.0.0.1 (the loopback
interface) to let only clients that are running on the same computer
connect to the Symantec AntiVirus Scan Engine.

Port number The port number must be exclusive to the Symantec AntiVirus Scan
Engine. The default port number is 1344. If you change the port
number, use a number that is not in use by any other program or
service.

HTML message
displayed for
infected files

The Symantec AntiVirus Scan Engine includes a default HTML
message to display to users when access to a file is denied because it
contains a virus. You can customize this message by specifying an
alternate path and file name or by editing the existing file. If you
choose to edit the existing file, you do not have to change this setting.

ICAP scan policy When an infected file is found, the Symantec AntiVirus Scan Engine
can do any of the following:

■ Scan only: Deny access to infected files (but do nothing to the
infected file).

■ Scan and delete: Delete all infected files, including files that are
embedded in archive files, without attempting repair.

■ Scan and repair files: Attempt to repair infected files (but do
nothing to files that cannot be repaired). Deny access to any files
that cannot be repaired.

■ Scan and repair or delete: Attempt to repair infected files, and
delete any unrepairable files from archive files. Deny access to
any top-level files that cannot be repaired.

20 Configuring the Symantec AntiVirus Scan Engine for custom integrations
Specifying file types to scan
To configure the scan engine to use ICAP

1 On the Symantec AntiVirus Scan Engine administrative interface, in the left
pane, click Configuration.

2 On the Protocol tab, click ICAP.

The configuration settings display for the selected protocol.

3 In the Scan Engine bind address box, type a bind address, if necessary.

By default, the Symantec AntiVirus Scan Engine binds to all interfaces. You
can restrict access to a specific interface by typing the appropriate bind
address. Use 127.0.0.1 (the loopback interface) to let only clients that are
running on the same computer connect to the Symantec AntiVirus Scan
Engine.

4 In the Port number box, type the TCP/IP port number to be used by client
applications to pass files to the Symantec AntiVirus Scan Engine for
scanning.

The default setting for ICAP is port 1344.

5 In the HTML message displayed for infected files box, type the path and file
name to supply an alternate HTML file, if necessary.

6 In the ICAP scan policy drop-down list, select how you want the Symantec
AntiVirus Scan Engine to handle infected files.

The default setting is Scan and repair or delete.

7 Click Confirm Changes to save the configuration.

8 Do one of the following:

■ Click Continue to make additional changes to the Symantec AntiVirus
Scan Engine configuration.

■ Click Restart to save your changes and restart the Scan Engine service
now.

■ Click Save/No Restart to save your changes. (Changes will not take effect
until the service is restarted.)

Specifying file types to scan
You can control which file types are scanned by the Symantec AntiVirus Scan
Engine by specifying extensions that you do not want to scan (using an exclusion
list) or by specifying extensions that you want to scan (using an inclusion list), or
you can scan all file types regardless of extension.

21Configuring the Symantec AntiVirus Scan Engine for custom integrations
Specifying file types to scan
The Symantec AntiVirus Scan Engine is configured by default to scan all files
except those with the extensions listed in a prepopulated exclusion list. The
default exclusion list contains those file types that are unlikely to contain viruses,
but you can edit this list.

Inclusion and exclusion lists by definition do not scan all file types; thus, new
types of viruses may not always be detected. Scanning all files regardless of
extension is the most secure setting, but imposes the heaviest demand on
resources.

Note: During virus outbreaks, you may want to scan all files even if you normally
control the file types that are scanned with the inclusion or exclusion list.

Using an inclusion list to control which types of files are scanned is the least
secure setting. Only those files types that are specifically listed in an inclusion list
are scanned; thus, with an inclusion list, there is an almost limitless number of
possible file extensions that are not scanned. For this reason, the inclusion list is
not prepopulated, but you can choose to populate this list if you want to limit the
file types that are scanned using an inclusion list.

If you use either the inclusion or the exclusion list to control the file types that are
scanned (rather than scanning all files), the manner in which the list is applied
differs depending on which of the following protocols are in use by the Symantec
AntiVirus Scan Engine (these differences are particularly important if you are
upgrading from ICAP 0.95 to ICAP 1.0):

■ Native protocol and ICAP 1.0: The inclusion or exclusion list is used by the
Symantec AntiVirus Scan Engine only to determine which files to scan of
those that are embedded in archival file formats (for example, .zip or .lzh
files). All top-level files that are sent to the Symantec AntiVirus Scan Engine
are scanned regardless of file extension.

Note: If you are using the native protocol or ICAP 1.0 and want to control
the file types that are scanned at the top level, you must provide logic or take
advantage of existing mechanisms on the client side to send only certain file
types to the Symantec AntiVirus Scan Engine for scanning. The logic on the
client side controls the types of files that are scanned at the top level, and the
extension list setting controls which embedded files are scanned.

■ ICAP 0.95: The inclusion or exclusion list applies to all files that are sent to
the Symantec AntiVirus Scan Engine for scanning. This extension list is
consulted for both top-level files and embedded files that are contained in
archival file formats (for example, .zip or .lzh files).

22 Configuring the Symantec AntiVirus Scan Engine for custom integrations
Specifying file types to scan
Specify which file types to scan

You can control which file types are scanned by specifying extensions that you
want to scan or that you do not want to scan, or you can scan all files regardless of
extension. The Symantec AntiVirus Scan Engine is configured by default to scan
all files except those with extensions listed in the prepopulated exclusion list.

To scan all files regardless of extension

1 On the Symantec AntiVirus Scan Engine administrative interface, in the left
pane, click Blocking Policy.

2 On the AntiVirus tab, under File types to be scanned, click Scan all files
regardless of extension.

3 Click Confirm Changes to save the configuration.

4 Do one of the following:

■ Click Continue to make additional changes to the Symantec AntiVirus
Scan Engine configuration.

■ Click Restart to save your changes and restart the Scan Engine service
now.

■ Click Save/No Restart to save your changes. (Changes will not take effect
until the service is restarted.)

To scan all files except for those with extensions that are in the exclusion list

1 On the Symantec AntiVirus Scan Engine administrative interface, in the left
pane, click Blocking Policy.

2 On the AntiVirus tab, under File types to be scanned, click Scan all files
except those with the following extensions.

3 Edit the extension list to add extensions that you do not want to scan or
delete extensions that you want to scan.

Use a period with each extension in the list. Separate each extension with a
semicolon (for example, .com;.doc;.bat). To exclude files with no extension,
use two adjacent semicolons (for example, .com;.exe;;).

4 To restore the default extension lists, click Restore default lists.

23Configuring the Symantec AntiVirus Scan Engine for custom integrations
Specifying file types to scan
5 Click Confirm Changes to save the configuration.

6 Do one of the following:

■ Click Continue to make additional changes to the Symantec AntiVirus
Scan Engine configuration.

■ Click Restart to save your changes and restart the Scan Engine service
now.

■ Click Save/No Restart to save your changes. (Changes will not take effect
until the service is restarted.)

To scan only files with extensions that are in the inclusion list

1 On the Symantec AntiVirus Scan Engine administrative interface, in the left
pane, click Blocking Policy.

2 On the AntiVirus tab, under File types to be scanned, check Scan files with
the following extensions.

3 Edit the extension list to add extensions that you want to scan or delete
extensions that you do not want to scan.

Use a period with each extension in the list. Separate each extension with a
semicolon (for example, .com;.doc;.bat). To scan files that have no
extensions, use two adjacent semicolons (for example, .com;.exe;;).

4 Click Confirm Changes to save the configuration.

5 Do one of the following:

■ Click Continue to make additional changes to the Symantec AntiVirus
Scan Engine configuration.

■ Click Restart to save your changes and restart the Scan Engine service
now.

■ Click Save/No Restart to save your changes. (Changes will not take effect
until the service is restarted.)

24 Configuring the Symantec AntiVirus Scan Engine for custom integrations
Changing an ICAP response
Changing an ICAP response
In its default configuration when ICAP is in use as the communication protocol,
the Symantec AntiVirus Scan Engine sends a 200 OK response for the following
scenarios:

■ No virus was detected during the scan.

■ A virus was detected, but the file could not be repaired.

■ A virus was detected and the Symantec AntiVirus Scan Engine is configured
for scan only mode.

If a virus is detected and the file cannot be repaired or the scan engine is
configured for scan only mode, the Symantec AntiVirus Scan Engine includes a
replacement file (the file specified for ICAPInfectionHTMLfile) in the body of the
response message. The replacement file contains an HTML and/or email message
that informs users that their access to a file is being denied because it contains a
virus.

The Symantec AntiVirus Scan Engine default behavior deviates from the ICAP
1.0 standard, which does not support the automatic sending of a replacement file.
In the ICAP 1.0 standard, this type of context-sensitive behavior is performed by
the client rather than the scan engine.

The ICAP 1.0 standard also differs from the ICAP 0.95 implementation in this
regard. If you were using ICAP 0.95 and want to maintain similar functionality
when you migrate to ICAP 1.0, you should use the Symantec AntiVirus Scan
Engine default ICAP response setting if the client application can support it.

If your client application closely follows the ICAP 1.0 standard, you might need
to change the Symantec AntiVirus Scan Engine default ICAP response setting to
receive an ICAP 403 response instead of a replacement file. The scan engine sends
a 403 response if the file is infected and cannot be repaired. If no virus is detected,
the scan engine returns a 200 OK response. You should change the default ICAP
response setting only if you are sure that the client application supports this
behavior.

Note: To make this change, you must edit the Symantec AntiVirus Scan Engine
configuration file.

25Configuring the Symantec AntiVirus Scan Engine for custom integrations
Changing an ICAP response
To change the ICAP response

1 Locate the Symantec AntiVirus Scan Engine configuration file.

The configuration file is located in the following default directories:

■ On Solaris and Red Hat Linux: /opt/SYMCScan/etc/symcscan.cfg

■ On Windows 2000 Server/Advanced Server: C:\Program
Files\Symantec\Scan Engine\symcscan.cfg

If you are running more than one copy of the Symantec AntiVirus Scan
Engine on a computer, make sure that you have the appropriate
configuration file.

2 Open the configuration file with a text editor.

3 At ICAPResponse=, type one of the following to specify the scan engine
response when a file is blocked because it is unrepairable (ICAP 1.0 only):

■ 0: Send an ICAP 403 response.

■ 1: Send a replacement file.

This is the default setting.

4 Save the file.

5 Stop and restart the Symantec AntiVirus Scan Engine.

26 Configuring the Symantec AntiVirus Scan Engine for custom integrations
Changing an ICAP response

Chapter
 3
Constructing clients using
ICAP 1.0

This chapter includes the following topics:

■ How ICAP works

■ Finding more information on ICAP

■ About ICAP messages

■ About the antivirus scanning process

■ Determining which services are supported

■ Sending files for scanning

28 Constructing clients using ICAP 1.0
How ICAP works
How ICAP works
The Internet Content Adaptation Protocol (ICAP) is a request/response-based
protocol that lets ICAP clients pass messages to ICAP servers for processing or
adaptation. The client initiates the session by sending request messages over a
TCP/IP connection to a passively waiting ICAP server on a designated port. (Port
1344 is the default ICAP port.) The server then runs the service that was
requested, such as antivirus scanning; performs any transformations that are
necessary, such as repairing an infected file; and sends a response back to the
client with any modified data.

A single transport can be used for multiple request/response pairs. Requests are
matched with responses by allowing only one outstanding request on a
connection at a time. Multiple connections can be used.

The Symantec AntiVirus Scan Engine supports the ICAP response modification
mode (RESPMOD). In response modification mode, an ICAP client receives a
data request from an origin server. The ICAP client then passes the data to an
ICAP server for evaluation and post-processing.

The Symantec AntiVirus Scan Engine supports the following ICAP methods (also
called commands):

■ OPTIONS: Lets the client obtain information from an ICAP server about
available services

See “Determining which services are supported” on page 33.

■ RESPMOD: Lets the client send files to the Symantec AntiVirus Scan Engine
for scanning and repair services

See “Sending files for scanning” on page 36.

Finding more information on ICAP
The Symantec AntiVirus Scan Engine supports the ICAP 1.0 specification
presented in RFC 3507 (April 2003). Much of the information in the Symantec
AntiVirus Scan Engine Software Developer’s Guide is obtained directly from the
specification. However, the specification contains more extensive examples and
additional detailed information. Developers are encouraged to consult the
specification, as well as other sources.

For more information about ICAP specifications, visit the ICAP Web site at:
www.i-cap.org

29Constructing clients using ICAP 1.0
About ICAP messages
About ICAP messages
ICAP clients and servers communicate through messages, which are similar in
format to HTTP. ICAP messages consist of client requests and server responses.
All ICAP messages consist of a start line, which includes a client request or server
response (depending on the type of message), header fields, and the message
body. A blank line must precede the message body to distinguish the headers
from the message body.

Multiple messages can be encapsulated in a single ICAP message for vectoring of
requests, responses, and request/response pairs on an ICAP server. Encapsulated
messages must include an encapsulated header, which offsets the start of each
encapsulated section from the start of the message body.

See “About encapsulated messages” on page 31.

Although request and response messages have unique headers, some headers are
common to both requests and responses. Table 3-1 lists the general request/
response headers that the Symantec AntiVirus Scan Engine uses.

About request messages
All ICAP client requests must start with a request line that includes the following
components:

■ Method: ICAP command or operation to perform (for example, RESPMOD)

■ Uniform Resource Identifier (URI): Complete host name of the ICAP server
and the path of the resource that is being requested

■ ICAP version: Version string for the current version of ICAP using the
format ICAP/version number (for example ICAP/1.0)

Table 3-1 General request/response headers

Header Description

Connection Specifies options that the message sender wants to use only for
that connection and not for proxies over other connections.

For example:

Connection: close

Date Provides the date and time that the message was created, using
standard HTTP date and time format.

For example:

Date: Tue, 5 Nov 2002 14:29:31 GMT

30 Constructing clients using ICAP 1.0
About ICAP messages
The URI consists of the following components:

ICAP_URI = Scheme ":" Net_Path ["?" Query]

Scheme = "icap"

Net_Path = "//" Authority [Abs_Path]

Authority = [userinfo "@"] host [":" port]

Header fields follow the request line and specify the ICAP resource that is being
requested as well as other information, such as cache control information. ICAP-
specific headers are encapsulated. The header fields end with a blank line
followed by the message body. The message body contains the encapsulated
HTTP messages that are being sent for scanning and modification.

Table 3-2 lists the specific request headers that are allowed in ICAP requests.

Table 3-2 Request headers

Header Description

Allow Lists the methods that the resource supports. For example, a
client request can include an Allow: 204 header, which
indicates that it will allow the server to reply to the message
with a 204 No Content response if the file does not need
modification. The client must buffer the message.

From Provides the Internet email address for the user who is sending
the client request. The address should use the standard HTTP
mailbox format.

For example:

From: username@symantec.com

Host Specifies the host name and port number of the resource being
requested.

Referer Specifies the path that the client followed to obtain the URI.
This optional header lets the server generate lists of back-links
to resources and trace invalid links.

User-Agent Identifies the software program that is used by the client that
originated the request. This information is used for statistical
purposes, to trace protocol violations, and to tailor responses
to the software capabilities.

Preview (ICAP-specific header) Lets the client send a portion of a file to
the Symantec AntiVirus Scan Engine for scanning. The client
uses this header to specify the amount of data, in bytes, that
will be sent for preview.

31Constructing clients using ICAP 1.0
About ICAP messages
About response messages
ICAP client responses start with a status line, which includes the ICAP version
and a status code. For example:

ICAP/1.0 200 OK

Status codes vary depending on the type of request.

See Table 3-3 “OPTIONS response codes” on page 34 and Table 3-6 “RESPMOD
response codes for successfully processed scanning” on page 39 for more
information about status codes.

The status line is followed by one or more response headers that let the server
pass additional information (that is, information that cannot be placed in the
status line) to the client.

See “About RESPMOD response headers” on page 41.

About encapsulated messages
The ICAP encapsulation model provides a lightweight means of packaging
multiple HTTP message sections into a single ICAP message for vectoring of
requests, responses, and request/response pairs on an ICAP server. An
encapsulated section can consist of either HTTP message headers or bodies.

Encapsulated message bodies must be transferred using chunked transfer
encoding. This keeps the transport-layer connection between the client and
server open for later use and lets the server send incremental responses to reduce
the latency that is perceived by users. Encapsulated headers are not chunked. This
lets the ICAP client copy the header directly from the HTTP client to the ICAP
server without having to reprocess it.

Note: The chunked transfer encoding modifies the body of a message so that it
can be transferred as a series of chunks, each with its own (hexadecimal) size
indicator, followed by an optional footer that contains entity-header fields. See
the HTTP/1.1 specification (RFC 2616, section 3.6.1) for more information.

The encapsulated header must be included in every ICAP message, except for
OPTIONS requests. This header provides information about where each
encapsulated section and message body starts and ends.

For example:

Encapsulated: req-hdr=0, res-hdr=45, res-body=100

This example indicates that the message encapsulates a group of request headers,
response headers, and a response body at 0, 45, and 100 byte offsets. Byte offsets

32 Constructing clients using ICAP 1.0
About the antivirus scanning process
use a decimal format; however, chunk sizes within an encapsulated body use a
hexadecimal format. If none of the message body is encapsulated, a null-body
header is used.

Encapsulated headers use the following syntax:

encapsulated_header: "Encapsulated: " encapsulated_list

encapsulated_list: encapsulated_entity |

encapsulated_entity ", " encapsulated_list

encapsulated_entity: reqhdr | reshdr | reqbody | resbody | optbody

reqhdr = "req-hdr" "=" (decimal integer)

reshdr = "res-hdr" "=" (decimal integer)

reqbody = { "req-body" | "null-body" } "=" (decimal integer)

resbody = { "res-body" | "null-body" } "=" (decimal integer)

optbody = { "opt-body" | "null-body" } "=" (decimal integer)

Encapsulated headers must end with a blank line to make them readable and to
terminate line-by-line HTTP parsers.

About the antivirus scanning process
The Symantec AntiVirus Scan Engine provides basic antivirus scanning services
to ICAP clients through the RESPMOD method.

The general process is as follows:

■ A client application receives a request to access data.

■ The client application forwards the data (or a portion of it for preview) to the
Symantec AntiVirus Scan Engine for scanning using the RESPMOD method.

See “Sending files for scanning” on page 36.

■ The Symantec AntiVirus Scan Engine processes the request, performs any
transformations that are necessary (such as repairing infected files), and
sends a response back to the client with any modified data.

Before sending files, the client can query the ICAP server using the OPTIONS
method to determine which services are supported.

See “Determining which services are supported” on page 33.

33Constructing clients using ICAP 1.0
Determining which services are supported
Determining which services are supported
The OPTIONS method lets a client application query an ICAP server for
information about supported services and commands and preferred file handling
methods. The client application should perform this query before sending files
for scanning.

The OPTIONS method consists of a request line that contains the address or
name of the server on which the Symantec AntiVirus Scan Engine is installed and
the URI for the Symantec AntiVirus Scan Engine service that you want to query.

When the Symantec AntiVirus Scan Engine receives an OPTIONS request from a
client application, it sends a response that includes the following information:

■ Maximum number of simultaneous connections allowed

■ Preferred data preview size

■ Preferred file handling methods

■ Supported methods (for example, RESPMOD)

Querying the AVSCAN service
The AVSCAN service performs scanning, repair, and delete functions using the
scanning preferences that you specify through the Symantec AntiVirus Scan
Engine administrative user interface.

Use the following format to specify the URI:

icap://<Server>/avscan

A sample OPTIONS request is as follows:

OPTIONS icap://saves.com/avscan ICAP/1.0
Host: icapclient.savese.com

The AVSCAN service returns a response, which includes a status line followed by
a series of response headers. A sample OPTIONS response is as follows:

ICAP/1.0 200 OK
Date: Fri Apr 4 03:06:25 2003 GMT
Methods: RESPMOD
Service: Symantec AntiVirus Scan Engine/4.0.3.37
ISTag: "1049425529"
X-Definition-Info: 20030106.006
Max-Connections: 16
X-Allow-Out: X-OuterContainer-Is-Mime, X-Infection-Found, X-
Violations-Found, X-Definition-Info, X-AV-License
X-Allow-Out: X-SAVSE-AV-Status
Allow: 204

34 Constructing clients using ICAP 1.0
Determining which services are supported
Options-TTL: 3600
Preview: 4
Transfer-Preview: *
X-AV-License: 1
Encapsulated: null-body=0

This response informs the client that, besides the OPTIONS method, the only
supported method is RESPMOD, that the optional 204 shortcut is supported,
that four bytes of preview information are preferred, that all files should be sent
for preview, and that the data in this response may be cached up to one hour. The
maximum number of simultaneous connections that the Symantec AntiVirus
Scan Engine supports may vary, depending on the operating environment. In this
example, the server supports a maximum of 16 simultaneous connections.

See “OPTIONS response codes” on page 34 and “OPTIONS response headers”
on page 35.

OPTIONS response codes
Table 3-3 lists the possible response codes to an OPTIONS request.

Table 3-3 OPTIONS response codes

Response
code

Text Description

200 OK Server processed request successfully

400 Bad request Syntax error or other problem parsing the
request

404 Not found URI in request does not correspond to an
available service

405 Method not implemented Not valid unless OPTIONS is misspelled

408 Request timeout Client took too long to send request

500 Internal server error Generic problem with server

503 Service unavailable/
overloaded

Server not ready to provide service

505 ICAP version not supported Only ICAP 1.0 is supported with this
method

551 Resource unavailable Memory or disk problem on server

35Constructing clients using ICAP 1.0
Determining which services are supported
OPTIONS response headers
Table 3-4 lists the response headers that are included in an OPTIONS response.

Table 3-4 OPTIONS response headers

Header Description

Date Specifies the date and time, as set on the server clock.

Service Specifies the name and version number of the ICAP
server.

ISTag (ICAP service tag) Lets an ICAP server send service-
specific information to an ICAP client. This data can be
used to validate whether a server response, including
cached data, is still valid.

The Symantec AntiVirus Scan Engine returns an ISTag
with every response to indicate the time of the most
recent change of virus definitions or scan policy. Cached
data that does not match the current ISTag is no longer
valid. The value is an integer that represents the number
of seconds since the UNIX epoch.

For example:

ISTag: “99293223881”

Methods Specifies the methods (commands) that are supported by
the service that you queried.

Allow Lists the optional ICAP features that the server supports.

Preview Indicates the number of bytes of data that can be sent to
the Symantec AntiVirus Scan Engine for preview.

Transfer-Preview Lists the file extensions that should be sent to the
Symantec AntiVirus Scan Engine for preview before
sending the entire file. An asterisk (*) wildcard character
represents the default behavior for all file extensions that
are not specified in another Transfer type header.

Transfer-Complete Lists the file extensions that should always be sent in their
entirety to the Symantec AntiVirus Scan Engine and that
should not be previewed. An asterisk (*) wildcard
character represents the default behavior for all file
extensions that are not specified in another Transfer type
header.

36 Constructing clients using ICAP 1.0
Sending files for scanning
Sending files for scanning
The Symantec AntiVirus Scan Engine supports one URI for scanning and repair
services, which uses the following format:

icap://server.name:port/avscan

Replace server.name with the name of the server on which the Symantec
AntiVirus Scan Engine is running. The port number is optional if the Symantec
AntiVirus Scan Engine is running on port 1344, which is the default ICAP port.

Sending portions of files for preview
The Symantec AntiVirus Scan Engine can preview data to determine whether it
needs to be scanned based on known virus behavior. For example, .gif files are
typically not scanned because they generally do not contain executable code. The
rules for which types of files are suitable for preview are determined by the
inclusion and exclusion lists that are configured in the Symantec AntiVirus Scan
Engine.

Max-Connections Indicates the maximum number of simultaneous ICAP
connections that the server supports.

Options-TTL Indicates the time (in seconds) during which the
response is valid or cached. A blank header indicates that
the response does not expire.

Encapsulated Offsets the start of each encapsulated section from the
start of the message body.

X-AV-License Indicates whether a valid AV scanning license has been
installed on the scan engine, where 1 indicates a valid
license and 0 indicates no valid license.

X-Allow-Out Indicates the custom X-headers returned in responses
from this scan engine.

X-Definition-Info Indicates the date and revision number of the virus
definitions in the following format: YYYYMMDD.RRR,
where YYYY is the four-digit year, MM is the month, DD
is the day, and RRR is the revision number.

Table 3-4 OPTIONS response headers

Header Description

37Constructing clients using ICAP 1.0
Sending files for scanning
Before a file is sent for scanning, the client should send an OPTIONS request to
determine whether a file type is suitable for preview and how much data should
be sent. The Symantec AntiVirus Scan Engine provides this information in the
following headers of the OPTIONS response message:

■ Preview: Indicates the preferred number of bytes of data that can be sent

■ Transfer-Complete: Indicates which file types should be sent in their entirety

■ Transfer-Preview: Indicates which file types should be sent for preview

For more information about OPTIONS response headers, see Table 3-4
“OPTIONS response headers” on page 35.

Table 3-5 details the Symantec AntiVirus Scan Engine scanning behavior that is
based on the configured scanning policies.

For more information, see the Symantec AntiVirus Scan Engine Implementation
Guide.

If an OPTIONS response indicates that a file is suitable for preview, the client
should include a Preview header in the request message that indicates the portion
of data, in bytes, that is being sent for preview. The Symantec AntiVirus Scan

Table 3-5 Scanning behavior

Scanning
policy

Transfer-Complete
header

Transfer-Preview
header

Scanning behavior

Scan all files
regardless of
extension

Asterisk (*)
character

Not used The Symantec AntiVirus
Scan Engine scans every file
in its entirety without
previewing it first.

Scan files with
the following
extensions
(inclusion list)

List of file
extensions

Asterisk (*)
character

The Symantec AntiVirus
Scan Engine scans the entire
file for each file type that is
in the inclusion list. Other
file types are previewed for
dangerous content.

Scan all files
except those
with the
following
extensions
(exclusion list)

Asterisk (*)
character

List of file
extensions

The Symantec AntiVirus
Scan Engine previews the
file types that are listed in
the Transfer-Preview header
for dangerous content. All
other file types, including
unidentified file types, are
scanned in their entirety.

38 Constructing clients using ICAP 1.0
Sending files for scanning
Engine then evaluates the initial chunk of data to determine whether a full scan is
required. If so, the Symantec AntiVirus Scan Engine requests the remainder of
the data. Scan results are returned in the RESPMOD response message.

See “Interpreting RESPMOD response messages” on page 38.

Allowing no content responses
The Allow: 204 header is an optional request header that lets the Symantec
AntiVirus Scan Engine return a 204 No Content response code if the message
does not require modification. This can optimize server performance because the
Symantec AntiVirus Scan Engine can declare a file clean without waiting to
receive the entire message and does not have to return the message. The
processing burden is placed on the client, which must buffer the entire message
during the scan. The Symantec AntiVirus Scan Engine returns a 204 No Content
response outside of a preview only if the client request includes an Allow: 204
header.

Interpreting RESPMOD response messages
After performing a scan, the Symantec AntiVirus Scan Engine returns a response
message, which indicates the scan results and, if applicable, any modified data.
Response messages start with an ICAP status line, which includes the ICAP
version and a status code. For example:

ICAP/1.0 200 OK

The status line is followed by one or more response headers that let the server
pass additional information to the client that cannot be placed in the status line.
If no virus is detected, the Symantec AntiVirus Scan Engine also returns a copy of
the scanned data to the client, unless the client request includes an Allow: 204
header. If so, the Symantec AntiVirus Scan Engine only returns a response
message. If a virus is detected, the scan policy settings determine whether the
Symantec AntiVirus Scan Engine attempts to repair the file and whether modified
content is returned to the client.

39Constructing clients using ICAP 1.0
Sending files for scanning
A standard RESPMOD request is as follows:

RESPMOD icap://saves.com/avscan ICAP/1.0
Host: icapclient.savese.com
Allow: 204
Preview: 4
Encapsulated: req-hdr=x res-hdr=y res-body=z

[Request headers…]

[Response headers…]

4

[First four bytes of body data…]

0

RESPMOD response codes
Response codes in the 200 class indicate whether a virus was found and which
action, if any, was taken to repair the file. Response codes in the 400 and 500
classes are error codes. Table 3-6 lists the possible RESPMOD response codes for
scans that processed successfully.

Table 3-6 RESPMOD response codes for successfully processed scanning

Response
code

Text Description

100 Continue The Symantec AntiVirus Scan Engine completed a preview
and requires additional data.

200 OK The request was processed successfully.

In its default configuration, the Symantec AntiVirus Scan
Engine returns a 200 response if no virus was detected or if
a virus was detected but either the file cannot be repaired or
the scan engine is configured for scan only mode.

If the Symantec AntiVirus Scan Engine is configured to
send an ICAP 403 response, the Symantec AntiVirus Scan
Engine returns a 200 response only if no virus was detected.

See “Changing an ICAP response” on page 24.

201 Created A virus was detected and the file has been repaired (not
valid for scan only mode). The response also includes the
repaired data.

204 No content
necessary

No virus was detected and the client sent an Allow: 204
header, which indicates that the Symantec AntiVirus Scan
Engine does not need to return data to the client.

40 Constructing clients using ICAP 1.0
Sending files for scanning
Table 3-7 lists the possible RESPMOD response codes for client errors.

Table 3-8 lists the possible RESPMOD response codes for server errors.

Table 3-7 Client error RESPMOD response codes

Response
code

Text Description

400 Bad request The Symantec AntiVirus Scan Engine was unable
to process the request because of a syntax error
or other general problem in the client request.

403 Forbidden. Infected
and not repaired.

The data was infected and cannot be repaired or
the Symantec AntiVirus Scan Engine is
configured for scan only mode.

Note: This response is the standard ICAP
behavior, as documented in the ICAP 1.0
specification. However, to support NetApp
NetCache clients, the Symantec AntiVirus Scan
Engine does not follow this behavior by default.
If your client application closely follows the
ICAP 1.0 standard, you might need to change the
default setting for an ICAP response.

See “Changing an ICAP response” on page 24.

404 Not found The URI that was specified in the client request
does not match any service that is available on
the server.

405 Method not
implemented

The client requested a method that is not
supported by the server (other than OPTIONS or
RESPMOD). The response also includes an
Allow header line that identifies the supported
methods.

408 Request timeout The client took too long to send the request.

Table 3-8 Server error RESPMOD response codes

Response
code

Text Description

500 Internal server error A generic problem occurred on the server.

503 Service unavailable/
overloaded

The server is not ready to provide service.

41Constructing clients using ICAP 1.0
Sending files for scanning
About RESPMOD response headers
Table 3-9 lists the RESPMOD response headers that are specific to antivirus
scanning.

505 ICAP version not
supported

The ICAP client is using a version of ICAP other
than 1.0.

533 Error scanning file An error occurred during file scanning that
prevented the Symantec AntiVirus Scan Engine
from completing the scan.

539 Aborted - No AV
scanning license

The Symantec AntiVirus Scan Engine is unable
to scan the data because a valid license does not
exist.

See “About licensing” on page 13.

551 Resource unavailable A memory or disk problem occurred on the
server.

Table 3-9 RESPMOD response headers

Header Description

Service Provides information about the software that is used by
the origin server to handle the request. If the request is
handled by a proxy server, the proxy server can add
information using the Via field, but cannot modify the
server response.

Service-ID Provides information about the software that is used by
the origin server to handle the request. This header is a
shorter version of the Service header.

Table 3-8 Server error RESPMOD response codes

Response
code

Text Description

42 Constructing clients using ICAP 1.0
Sending files for scanning
ISTag (ICAP service tag) Lets an ICAP server send service-
specific information to an ICAP client. This data can be
used to validate whether a server response, including
cached data, is still valid.

The Symantec AntiVirus Scan Engine returns an ISTag
with every response to indicate the time of the most
recent change of virus definitions or scan policy. Cached
data that does not match the current ISTag is no longer
valid. The value is an integer that represents the number
of seconds since the UNIX epoch.

For example:

ISTag: “99293223881”

X-Outer-Container-Is-Mime (Optional header) An integer value that indicates
whether the outer container is a valid MIME container. A
client application can use this information to reject
content that does not meet this criteria.

Zero (0) indicates that the outer container is not a valid
MIME container, and one (1) indicates that the outer
container is a valid MIME container.

X-Infection-Found Provides information about an infection that is found.
Only one violation is reported, regardless of the number
of violations found. The header provides the following
information regarding the infection:

■ Violation type: An integer value for the violation.
Zero (0) indicates a virus, one (1) indicates a mail
policy violation, and two (2) indicates a container
violation or malformity.

■ Resolution: An integer value that indicates what
action was taken on the file. Zero (0) indicates that
the file was not fixed, one (1) indicates that the file
was repaired, and two (2) indicates that access to the
file was blocked.

■ Threat value: String that describes the virus or
violation that was found.

Table 3-9 RESPMOD response headers

Header Description

43Constructing clients using ICAP 1.0
Sending files for scanning
Sample responses
In the following examples, C indicates the client and S indicates the Symantec
AntiVirus Scan Engine. Text throughout each section of the exchange explains
what is happening.

Scanning a clean file with a 4-byte preview

The following example shows a request to scan a clean file with a 4-byte preview.

C: RESPMOD icap://192.168.1.2:1344/AVSCAN ICAP/1.0
C: Host: 192.168.1.2:1344
C: Preview: 4
C: Allow: 204
C: Encapsulated: req-hdr=0, res-hdr=84, res-body=131
C:

The preceding section of code is the ICAP header, which is sent from the client to
the ICAP server (in this case, the Symantec AntiVirus Scan Engine). The
RESPMOD method is used to request an antivirus scan using the default
scanning mode that is configured on the scan engine.

The client uses preview mode and sends the first 4 bytes of data as the initial
preview. The preview lets the scan engine determine the data type of the content
to be scanned. Thus, files that may have had the file extension altered are still
scanned for viruses if the data type is one that can potentially contain viruses.

X-Violations-Found Indicates the total number of violations (either an
infection or a policy violation) that were found in the
scanned data. If violations were detected, the header is
followed by a series of indented lines that provide the
following information for each violation:

■ File name: The name of the scanned file or the name
of a nested component within the scanned file, with
each component name separated by a slash
mark (/).

■ Violation name: The English-readable name of the
violation.

■ Violation ID: A numeric code for the violation.

■ Disposition: An integer value that indicates what
action was taken to fix the file. Zero (0) indicates
that the file was not fixed, one (1) indicates that the
file was repaired, and two (2) indicates that the file
was deleted.

Table 3-9 RESPMOD response headers

Header Description

44 Constructing clients using ICAP 1.0
Sending files for scanning
The Allow: 204 header indicates that the client does not require a copy of clean
data to be sent back from the antivirus scanner after the scan is complete. If
modifications are made (for example, the file is repaired), the data is always
returned.

The last line indicates that the headers from the original outgoing request are
present and can be found at byte offset 0 in the body of this ICAP request, that the
response headers from the content provider are included and start at byte offset
84 in the body of this ICAP request, and that the response body from the content
provided is included and can be found starting at byte offset 131 of this ICAP
request.

C: GET http://icapone.symantec.com/CLEAN01.DOC HTTP/1.1
C: Host: icapone.symantec.com
C:

The preceding section of code is the encapsulated copy of the original request that
initiated the transaction. The file name near the end of the request line is used to
identify the document for logging purposes on the scan engine.

C: HTTP/1.1 200 OK
C: Transfer-Encoding: chunked
C:

The preceding section of code shows response headers from the content provider.
The scan engine does not use these headers, but the headers must accompany
(possibly modified) any response that is sent back to the ICAP client, for eventual
delivery to the user who initiated the request.

C: 4
[4-byte chunk]
C:
C: 0
C:

In the preceding section of code, the ICAP client sends the 4-byte preview data
chunk to the scan engine, as indicated in the ICAP headers. The scan engine
examines the data and determines whether the remainder of the file needs to be
scanned.

S: ICAP/1.0 100 Continue
S:

In the preceding section of code, the scan engine determines, based on the
current policy, that the remainder of the data must be scanned, and sends a
Continue message.

C: 790a
[Chunk of size 30986 bytes]
C:
C: 0
C:

45Constructing clients using ICAP 1.0
Sending files for scanning
In the preceding section of code, the remainder of the data is sent from the client
to the scan engine. The chunked data encoding scheme is used. When the data is
received by the scan engine, the scan is completed, and no infection is found.

S: ICAP/1.0 204 No Content Necessary
S: ISTag: "1049478470"
S: Date: Fri Apr 04 17:58:33 2003 GMT
S: Service: Symantec AntiVirus Scan Engine/4.0.4.41
S: Service-ID: SYMCScan/4.0.4.41
S: X-Outer-Container-Is-Mime: 0

In the preceding section of code, because the client indicated (if the content was
clean) that the scan engine did not need to return a copy of the data, the 204 No
Content Necessary result is returned to the client to indicate that no problem was
found.

The ISTag header is returned so that the client can determine if the virus
definitions have changed on the scan engine. This type of change might cause an
ICAP client that implements caching to discard data or to mark data that needs to
be scanned again for infection based on the new virus definitions.

The X-Outer-Container-is-Mime header is set to 0 to indicate that the top-level
file scanned by the scan engine was not in MIME (email) format. Mail clients
expect the top level to be in MIME format, and can use this feature to identify
malformed messages that potentially should be discarded.

Scanning an infected file that cannot be repaired

The following example shows a request to scan a file that is infected and that
cannot be repaired. This example also includes a 4-byte preview.

C: RESPMOD icap://192.168.1.2:1344/AVSCAN ICAP/1.0
C: Host: 192.168.1.2:1344
C: Preview: 4
C: Allow: 204
C: Encapsulated: req-hdr=0, res-hdr=84, res-body=131
C:
C: GET http://icapone.symantec.com/BHM97UR.DOC HTTP/1.1
C: Host: icapone.symantec.com
C:
C: HTTP/1.1 200 OK
C: Transfer-Encoding: chunked
C:
C: 4
[4 byte chunk]
C:
C: 0
C:
S: ICAP/1.0 100 Continue
S:
C: 790a

46 Constructing clients using ICAP 1.0
Sending files for scanning
In the preceding section of code, the remainder of the file is sent as a chunk of size
30986 bytes, with a 0 chunk at the end to signal the end of the file. After it has
received all of the data, the scan engine scans the data, finds an infection, and
reports the results to the client.

With the default settings, an ICAP 200 response is returned with new content in
the body of the message to replace the original infected content. This is not in
strict compliance with the ICAP specification, but works better with a number of
WWW proxy servers.

For strict compliance, change the value of the ICAPResponse setting in the scan
engine configuration file to 0 so that the scan engine returns an ICAP 403
response instead of the 200 response that is demonstrated here.

S: ICAP/1.0 200 OK
S: ISTag: "1049478470"
S: Date: Fri Apr 04 17:59:29 2003 GMT
S: Service: Symantec AntiVirus Scan Engine/4.0.4.41
S: Service-ID: SYMCScan/4.0.4.41
S: X-Infection-Found: Type=0; Resolution=2;
Threat=Bloodhound.WordMacro;
S: X-Violations-Found: 1

BHM97UR.DOC
Bloodhound.WordMacro
18950
2

S: X-Outer-Container-Is-Mime: 0
S: Encapsulated: res-hdr=0, res-body=83
S:
S: HTTP/1.1 200 OK
S: Content-Length: 202
S: Pragma: no-cache
S: Content-Type: text/html
S:
S: ca
[Chunk of size 202 bytes - access denied HTML message]
S:
S: 0
S:

47Constructing clients using ICAP 1.0
Sending files for scanning
The response in the preceding section of code illustrates the following two
X-headers that are used in responses from the scan engine when a problem is
found during a scan:

■ The X-Infection-Found header provides a brief description of a problem that
is found during a scan. This header will be removed in a future release of the
software.

■ The X-Violations-Found header provides a complete manifest of any and all
problems found during a scan. The first line is the total number of problems
found (in this case, 1). For each problem that is identified, a block of detailed
information follows (see the four lines of indented text shown in the
example). The first line indicates the name of the file that contains the
problem. If the infection is found in a file that is contained in a container file
(such as a .zip file), this field contains the path to the specific file. The second
line indicates the name of the problem or infection. The third line provides
the problem ID or the virus ID. The fourth line indicates the resolution for
the specific problem. In this case, the 2 indicates that the infection was not
repaired.

48 Constructing clients using ICAP 1.0
Sending files for scanning

Chapter
 4
Constructing clients using
the client API library

This chapter includes the following topics:

■ General procedure for scanning

■ Compiling and linking

■ API functions

50 Constructing clients using the client API library
General procedure for scanning
General procedure for scanning
The Symantec AntiVirus Scan Engine client API library provides a set of
functions to simplify communication with the Symantec AntiVirus Scan Engine
using ICAP.

The procedure for scanning data is as follows:

■ The client calls ScanClientStartUp() once to initialize the client library and to
set up the scheduling.

■ Files are scanned using either ScanClientScanFile() or
ScanClientStreamStart(), ScanClientStreamSendBytes() (as many times as
necessary), and ScanClientStreamFinish().

■ Information on infections found (if any) is obtained using
ScanResultGetNumProblems() and ScanResultGetProblem().

■ Completion of scanning for a particular file is indicated using
ScanResultsFree().

■ Completion of all scanning is indicated (for example, before program
termination) using ScanClientShutDown() to free resources.

Sample code is included in the Symantec AntiVirus Scan Engine Software
Developer’s Guide for convenience. The sample code also is included in the
distribution package. The sample program demonstrates how to use the
Symantec AntiVirus Scan Engine API 192.168.1.2 to scan files.

See “Using the API” on page 73.

Compiling and linking
Table 4-1 describes requirements for compiling and linking on Solaris, Red Hat
Linux, and Windows 2000 Server/Advanced Server.

Note: The code (in all versions of all supported platforms) is compiled with
position-independent code so that it can be used in shared libraries.

Table 4-1 Compiling and linking requirements

Platform Include Initialize Link

Solaris #include “symcsapi.h” none libsocket.a libnsl.a
(for example, gcc -lsocket -
lnsl)

51Constructing clients using the client API library
Compiling and linking
Windows 2000 Server/Advanced Server
To compile on Windows 2000 Server/Advanced Server, use Microsoft Visual
Studio 6 or 7.

The source code should #include the symcsapi.h file and link to SYMCSAPI.lib.
The application should be compiled with multithreaded runtime libraries. For
example, in Microsoft Visual Studio, under Project Settings, click the C/C++ tab,
click Code Generation, and click Multithreaded Libraries.

Note: You must link to the winsock library (WS2_32.LIB) and initialize winsock
in the source code before scanning files. You must release winsock when all
network access is complete (usually just before exiting the program).

Initializing winsock
The client application must initialize winsock before scanning files. The following
example demonstrates winsock initialization:

#include <windows.h>
.
.
.

// start up winsock
WORD wVersionRequested;
WSADATA wsaData;
int err;

// Load WinSock, request version 1.0.
wVersionRequested = MAKEWORD(1, 0);
err = WSAStartup(wVersionRequested, &wsaData);
if (err != 0)
{

Red Hat
Linux

#include “symcsapi.h” none libnsl.a
(for example, gcc -lnsl)

Windows
2000 Server/
Advanced
Server

#include “symcsapi.h” initialize winsock winsock
(for example, WS2_32.LIB)

Table 4-1 Compiling and linking requirements

Platform Include Initialize Link

52 Constructing clients using the client API library
Compiling and linking
// ERROR
}

// Confirm WinSock supports the version we requested.
if (LOBYTE(wsaData.wVersion) != 1 ||

HIBYTE(wsaData.wVersion) != 0)
{

WSACleanup();
// ERROR

}

Shutting down winsock
You must release winsock when all network access is complete.

if (WSACleanup() == SOCKET_ERROR)
;// ERROR

Solaris
To compile on Solaris, use gcc compiler version 2.95 or 3.2.

The source code that makes calls to the library should #include the symcsapi.h
header file. In the makefile (or command line) that compiles the program,
libsymcsapi.a should be added and, if it is not already used, -lnsl -lsocket should
be added. For example:

gcc mycode.c libsymcsapi.a -lsocket -lnsl

Note: If you are compiling your own multithreaded application, you must define
the reentrant symbol (-D_REENTRANT) so that multithreading functions
properly. The API libraries are already compiled in this manner.

53Constructing clients using the client API library
API functions
Red Hat Linux
To compile on Red Hat Linux 7.2 and later, use gcc compiler version 2.95 or 3.2.

The source code that makes calls to the library should #include the symcsapi.h
header file. In the makefile (or command line) that compiles the program,
libsymcsapi.a should be added and, if it is not already used, -lnsl should be added.
For example:

gcc mycode.c libsymcsapi.a -lnsl

Note: If you are compiling your own multithreaded application, you must define
the reentrant symbol (-D_REENTRANT) so that multithreading functions
properly. The API libraries are already compiled in this manner.

Exceptions and error handling
The Symantec AntiVirus Scan Engine API C library does not throw exceptions or
include exception handling. Detected errors are returned as result codes from the
functions.

API functions
The API functions are as follows:

■ ScanClientStartUp

■ ScanClientScanFile

■ ScanResultGetNumProblems

■ ScanResultGetProblem

■ SC_DECODE_DISPOSITION

■ ScanResultsFree

■ ScanClientShutDown

■ ScanClientStreamStart

■ ScanClientStreamSendBytes

■ ScanClientStreamFinish

■ ScanClientStreamAbort

54 Constructing clients using the client API library
API functions
File-based scanning
If you are developing a file-based-scanning client, you will use the following
functions:

■ ScanClientStartUp()

■ ScanClientScanFile()

■ ScanResultGetNumProblems()

■ ScanResultGetProblem()

■ ScanResultsFree()

■ ScanClientShutDown()

Stream-based scanning
If you are developing a stream-based-scanning client, you will use the following
functions:

■ ScanClientStartUp()

■ ScanClientStreamStart()

■ ScanClientStreamSendBytes()

■ ScanClientStreamFinish()

■ ScanClientStreamAbort()

■ ScanResultGetNumProblems()

■ ScanResultGetProblem()

■ ScanResultsFree()

■ ScanClientShutDown()

ScanClientStartUp
The ScanClientStartUp function lets a new client begin submitting files to the
Symantec AntiVirus Scan Engine.

SC_ERROR ScanClientStartUp

(
HSCANCLIENT *client,
LPSTR pszClientConfiguration

)

55Constructing clients using the client API library
API functions
ScanClientStartUp parameters
Table 4-2 lists the parameters that are used.

Table 4-2 ScanClientStartUp parameters

Parameter Description

client Address of an HSCANCLIENT variable.

The HSCANCLIENT variable is a handle to a status data
structure used throughout the scanning process. This
variable contains information about the servers that are
being used and the scheduling mechanism. Memory is
allocated for this data structure by this call and must be freed
using ScanClientShutDown() when scanning is completed.

pszClientConfiguration A null-terminated string that contains configuration
information. Entries are separated with three semicolons
(;;;), and no spaces are allowed.

Three options are currently supported:

■ Server:ipaddress:port;;;…: All Symantec AntiVirus Scan
Engines that are used should be listed. At least one
server must be listed.

■ FailRetryTime:<seconds>: If the client fails to connect
to a Symantec AntiVirus Scan Engine, wait <seconds>
before trying to connect to that server again (use only
the other servers in the meantime, unless they have all
failed recently). The default setting is 30 seconds.

■ ReadWriteTime:<seconds>: If after <seconds> no
response is received from the scan engine (when data is
being transmitted to the scan engine), or if the
transmission of data does not complete (when data is
being receiving from the scan engine), return an error
message.

56 Constructing clients using the client API library
API functions
ScanClientStartUp return codes
Return codes are listed in Table 4-3. Negative values are warnings. Positive values
are errors.

ScanClientStartUp description
In a multithreaded environment, the client should make a single call to
ScanClientStartUp on behalf of all of its threads. This way, all threads use
scheduling via a single scheduler rather than multiple schedulers.

Parameter pszClientConfiguration should look like the following:

Server:1.2.3.4:1344;;;Server:1.2.3.5:1344

At least one Symantec AntiVirus Scan Engine must be specified. Entries are
separated with three semicolons. No spaces are allowed. If the default port (1344)
is used, the port number (and the colon) can be omitted.

Note: When multiple Symantec AntiVirus Scan Engines are specified, the API
provides automatic scheduling across any number of scan engines. The API
determines the appropriate scan engine to receive the next file to be scanned,
based on the scheduling algorithm. If a scan engine is unreachable or stops
responding during a scan, another scan engine is called and the faulty scan engine
is taken out of rotation for a period of time (30 seconds is the default setting). If
all of the scan engines are out of rotation, the faulty scan engines are called again.
The API does not stop trying to contact the scan engines unless five engines do
not respond or it appears that a file that is being scanned might have caused more
than one engine to stop responding.

Table 4-3 ScanClientStartUp return codes

Value Return code Description

3 SC_MEMORY_ERROR A memory allocation error has occurred.

1 SC_INVALID_PARAMETER A parameter that was passed to the function
was invalid.

0 SC_OK Success.

57Constructing clients using the client API library
API functions
ScanClientScanFile
The ScanClientScanFile function is called to have the Symantec AntiVirus Scan
Engine scan a file for viruses.

Note: The OriginalFileName parameter must be Unicode UTF-8 encoded.

SCSCANFILE_RESULT ScanClientScanFile
(

HSCANCLIENT hScanClient,
LPSTR pszOriginalFileName,
LPSTR pszActualFileName,
LPSTR pszOutputFileName,
LPSTR pszScanPolicy,
LPHSCANRESULTS phScanResults

)

ScanClientScanFile parameters
Table 4-4 lists the parameters that are used.

Table 4-4 ScanClientScanFile parameters

Parameter Description

hScanClient An HSCANCLIENT variable that has been initialized.

See “ScanClientStartUp” on page 54.

pszOriginalFileName The name of the file to be scanned. (The original name of the
file on the end user’s computer.)

This parameter is ignored if the PassFileByName=1 string is set
in pszScanPolicy.

pszActualFileName The name (path) of the file to scan on the Scan Client
computer.

This path may or may not be different than
pszOriginalFileName. For example, an end user may upload a
file to be scanned called sample.doc, but the same file may be
stored on the ISP computer as temp123.doc. In this case, the
pszOriginalFileName is sample.doc, but the
pszActualFileName may be /tmp/temp123.doc.

58 Constructing clients using the client API library
API functions
pszOutputFileName The storage location for the repaired file. (No output file is
created unless the input file is infected and the infection is
repairable.)

This parameter can be one of the following:

■ A null-terminated string that is a path to where the
repaired file is to be stored.

■ A char array at least MAX_STRING long, with the first
byte set to '\0'. The API generates a file name for the
repair file. When the function returns,
pszOutputFileName is set to the name of the repaired file.

Note: If this parameter is NULL, the API has the Symantec
AntiVirus Scan Engine scan the file for viruses but not attempt
repair. However, this is not the recommended method for
forcing the scan engine to scan files for viruses but not attempt
repair. Set the pszScanPolicy to ScanOnly instead.

If local scanning options are set using pszScanPolicy, the
Symantec AntiVirus Scan Engine ignores this parameter and
repairs the file in place.

Table 4-4 ScanClientScanFile parameters

Parameter Description

59Constructing clients using the client API library
API functions
pszScanPolicy A null-terminated string of the form
<option:value>;;;<option:value>…

No spaces are allowed.

The following options are supported:

■ ScanOnly:1: Scan for viruses but do not attempt repair.

■ AlwaysReportDefInfo:1: If a clean file is scanned, a
Problem Incident is created with only the virus
definitions date and revision number.

■ RepairOnly:1: Attempt to repair infected files but do not
delete files that cannot be repaired.

■ PassFileByName:1: The file to be scanned is on the same
computer as the Symantec AntiVirus Scan Engine or can
be accessed via NFS or another network file protocol. In
this case, the file is not sent over a socket. Instead, the
Symantec AntiVirus Scan Engine opens the file directly
for scanning. If a repair is required, the repair is made in
the local directory.
If this string is set, the Symantec AntiVirus Scan Engine
uses the pszActualFileName parameter to read the file
and uses the ExtensionList= and ExclusionList= options
to determine how to handle scanning for a specific file
type.
This functionality is not available for this release.
See “Maximizing performance” on page 14.

phScanResults When the function returns, this handle points at a structure
that contains information about any problems (infections)
found during the scan. If none were found, this parameter is
NULL unless the AlwaysReportDefInfo:1 policy is used in the
scan. Information regarding problems is extracted using the
described functions. If this parameter is not NULL, the
memory must be released using ScanResultsFree().

Table 4-4 ScanClientScanFile parameters

Parameter Description

60 Constructing clients using the client API library
API functions
ScanClientScanFile return codes
Return codes are listed in Table 4-5. Negative values indicate that a virus was
detected. Positive values are errors. Zero indicates a clean file.

Table 4-5 ScanClientScanFile return codes

Value Return code Description

-3 SCSCANFILE_INF_NO_REP The file was infected with a virus, but no
repair was possible.

-1 SCSCANFILE_INF_REPAIRED The file was infected, and repair was
successful.

0 SCSCANFILE_CLEAN No virus was found.

1 SCSCANFILE_FAIL_CONNECT Attempt to connect to a Symantec
AntiVirus Scan Engine failed.

2 SCSCANFILE_FAIL_INPUTFILE A problem was encountered reading the
file to be scanned.

3 SCSCANFILE_FAIL_ABORTED The scan was aborted abnormally.

4 SCSCANFILE_INVALID_PARAM Function was called with an invalid
parameter.

5 SCSCANFILE_FAIL_RECV_FILE An error occurred when attempting to
receive the repaired file.

6 SCSCANFILE_FAIL_MEMORY A memory allocation error has
occurred.

7 SCSCANFILE_FAIL_FILE_ACCESS The server couldn’t access the file to be
scanned. This error usually occurs for
LOCAL scans when the file permissions
are wrong or when the file is not in the
path that is specified in the
LocalFileScanDir parameter on the
server. This error can also occur when
the API encounters a problem while
writing repaired file data that was
received from the scan engine to the
output file.

10 SCSCANFILE_ERROR_SCANNING
FILE

An internal server error occurred while
the scan engine was attempting to repair
the file.

61Constructing clients using the client API library
API functions
ScanClientScanFile description
The ScanClientScanFile function determines the appropriate Symantec AntiVirus
Scan Engine (when multiple Symantec AntiVirus Scan Engines are running)
based on the scheduling algorithm. If a Symantec AntiVirus Scan Engine is
unreachable or goes down during a scan, another server is called and the faulty
server is taken out of rotation for a period of time. If all Symantec AntiVirus Scan
Engines are out of rotation, the faulty servers are called again. The
ScanClientScanFile function does not stop trying to contact a Symantec
AntiVirus Scan Engine unless five servers are not functioning or it appears that a
file being scanned might have caused two servers to go down.

ScanResultGetNumProblems
The ScanResultGetNumProblems function indicates the number of infections
that are contained in an HSCANRESULT after scanning a file. Use the
ScanResultGetProblem() function to get information about the infections that
are reported in an HSCANRESULT after scanning a file.

SC_ERROR ScanResultGetNumProblems
(

HSCANRESULT hScanResult,
int *nNumProblems

)

ScanResultGetNumProblems parameters
Table 4-6 lists the parameters that are used.

15 SCSCANFILE_ABORT_NO_AV_
SCANNING_LICENSE

No valid license for antivirus scanning
functionality is installed.

Table 4-5 ScanClientScanFile return codes

Value Return code Description

Table 4-6 ScanResultGetNumProblems parameters

Parameter Description

hScanResult An HSCANRESULT variable that is returned by
ScanClientScanFile() or ScanClientStreamFinish().

nNumProblems When the function returns, this parameter is set to the number of
infections in the scanned file. If the AlwaysReportDefInfo:1 scan
policy option is used, at least one (blank) incident is reported,
along with the virus definitions date and revision number.

62 Constructing clients using the client API library
API functions
ScanResultGetNumProblems return codes
Return codes are listed in Table 4-7. Negative values are warnings. Positive values
are errors.

ScanResultGetProblem
The ScanResultGetProblem function is used to get specific information about a
virus.

SC_ERROR ScanResultGetProblem
(

HSCANRESULT hScanResult,
int nProblemNum,
int nAttribute,
LPSTR pszValueOut,
LPINT pnValueLengthInOut

)

ScanResultGetProblem parameters
Table 4-8 lists the parameters that are used.

Table 4-7 ScanResultGetNumProblems return codes

Value Return code Description

0 SC_OK Success.

-1 SC_NULL_PARAMETER A parameter that was passed to the function is
NULL when it shouldn’t be.

Table 4-8 ScanResultGetProblem parameters

Parameter Description

hScanResult An HSCANRESULT variable that is returned by
ScanClientScanFile() or ScanClientStreamFinish().

nProblemNum Integer specifying which problem entry is being investigated.

63Constructing clients using the client API library
API functions
ScanResultGetProblem return codes
Return codes are listed in Table 4-9. Negative values are warnings. Positive values
are errors.

nAttribute Identifies which attribute is being queried.

Valid attributes are:

■ SC_PROBLEM_FILENAME: The file name in which the
infection occurred.

■ SC_PROBLEM_VIRUSNAME: The name of the virus that
has infected the file.

■ SC_PROBLEM_VIRUSID: The unique numerical ID of
the virus.

■ SC_PROBLEM_DISPOSITION: Problem resolution. This
value is a number (in a string format) that indicates
whether the virus was cleaned from the file.

■ SC_PROBLEM_DEFINITION_DATE: The date stamp on
the virus definitions.

■ SC_PROBLEM_DEFINITION_REV: Revision number of
the definitions.

pszValueOut Buffer that holds the attribute value being retrieved.

pnValueLengthInOut Pointer to variable that holds the size of the pszValueOut
buffer. When the function returns, the size of the attribute
string is placed in this variable. You can determine if the buffer
was large enough to hold the entire string by seeing whether
pnValueLengthInOut is smaller after the call than before (if the
value is smaller, the buffer was large enough).

Table 4-9 ScanResultGetProblem return codes

Value Return code Description

5 SC_OUTOFRANGE_PARAMETER At least one parameter that was passed
to the function was out of range.

1 SC_INVALID_PARAMETER A parameter that was passed to the
function was invalid.

0 SC_OK Success.

Table 4-8 ScanResultGetProblem parameters

Parameter Description

64 Constructing clients using the client API library
API functions
ScanResultGetProblem description
A buffer is supplied to hold the information about the virus, and a pointer is
supplied to an integer that holds the size of the buffer. When the function
returns, the integer holds the amount of data that was placed in the buffer. If the
buffer is not large enough to hold the information, as much information as
possible is copied into the buffer. If the value of the integer is the same after the
call as it was before the call, the buffer most likely was not large enough to hold
the information. See the description of the nAttribute parameter for the type of
information that can be retrieved.

SC_DECODE_DISPOSITION
The problem disposition is retrieved with ScanResultGetProblem() in the form of
a string. The SC_DECODE_DISPOSITION function is a macro that converts the
string to an integer and defines the result codes as integers for easier processing.

int SC_DECODE_DISPOSITION(char *pszDisposition)

SC_DECODE_DISPOSITION parameters
Table 4-10 lists the parameters that are used.

SC_DECODE_DISPOSITION return codes
Return codes are listed in Table 4-11.

Table 4-10 SC_DECODE_DISPOSITION parameters

Parameter Description

pszDisposition The pszValueOut that is returned from
ScanResultGetProblem with nAttribute equal to
SC_PROBLEM_DISPOSITION.

Table 4-11 SC_DECODE_DISPOSITION return codes

Return code Description

SC_DISP_REPAIRED The infected file was repaired.

SC_DISP_UNREPAIRED The infected file was not repaired.

SC_DISP_DELETED The infected file was deleted.

65Constructing clients using the client API library
API functions
ScanResultsFree
The ScanResultsFree function is used to free the HSCANRESULT structure. This
function must be called when the result structure is no longer needed to free the
allocated memory.

SC_ERROR ScanResultsFree(HSCANRESULT hScanResult)

ScanResultsFree return codes
Return codes are listed in Table 4-12. Negative values are warnings. Positive
values are errors.

ScanClientShutDown
The ScanClientShutDown function is called to clean up after all scanning is
complete (for example, before program termination).

SC_ERROR ScanClientShutDown(HSCANCLIENT hScanClient)

ScanClientShutDown return codes
Return codes are listed in Table 4-13. Negative values are warnings. Positive
values are errors.

Table 4-12 ScanResultsFree return codes

Value Return code Description

0 SC_OK Success.

-1 SC_NULL_PARAMETER A parameter that was passed to the function is
NULL when it shouldn’t be.

Table 4-13 ScanClientShutDown return codes

Value Return code Description

3 SC_MEMORY_ERROR A memory allocation error has occurred.

0 SC_OK Success.

66 Constructing clients using the client API library
API functions
ScanClientStreamStart
The ScanClientStreamStart function is used for scanning streams. It can also be
used when you want to accept an input stream for scanning rather than an entire
file at one time. For example, if a file is being received via an HTTP stream as a
user uploads a file to a Web site, stream scanning can be used.

Note: The OriginalFileName parameter must be Unicode UTF-8 encoded.

SC_ERROR ScanClientStreamStart
(

HSCANCLIENT hScanClient,
LPSTR pszOriginalFileName,
LPSTR pszScanPolicy,
HSCANSTREAM *phScanStream

)

ScanClientStreamStart parameters
Table 4-14 lists the parameters that are used.

Table 4-14 ScanClientStreamStart parameters

Parameter Description

hScanClient This parameter should be set up using ScanClientStartUp().

pszOriginalFileName The original name of the file to be scanned as it was named on
the end user’s computer.

pszScanPolicy A null-terminated string of the form
<option:value>;;;<option:value>…

No spaces are allowed.

See “ScanClientScanFile” on page 57.

phScanStream Pointer to an HSCANSTREAM variable.

67Constructing clients using the client API library
API functions
ScanClientStreamStart return codes
Return codes are listed in Table 4-15. Negative values are warnings. Positive
values are errors.

Setting up stream scanning
The stream scanning feature lets the stream from the end user’s computer be sent
directly to the Symantec AntiVirus Scan Engine, rather than first receiving the
entire file and then calling ScanClientScanFile().

To set up stream scanning

1 Call ScanClientStreamStart() to initialize the HSCANSTREAM variable.

ScanClientStreamStart() must be called for each file to be scanned to
initialize the HSCANSTREAM variable. HSCANSTREAM variables can be
reused only after the stream has been closed with ScanClientStreamFinish()
or ScanClientStreamAbort(). The OriginalFileName parameter must be
Unicode UTF-8 encoded.

2 Send data to the server in chunks as it is received using
ScanClientStreamSendBytes().

3 When all data is sent, call ScanClientStreamFinish().

To abort the scan between the …Start() and …Finish() calls, call
ScanClientStreamAbort().

Table 4-15 ScanClientStreamStart return codes

Value Return code Description

6 SC_CONNECT_FAILURE Attempt to connect to a Symantec
AntiVirus Scan Engine failed.

3 SC_MEMORY_ERROR A memory allocation error has occurred.

2 SC_SOCKET_FAILURE A socket communications error has
occurred.

1 SC_INVALID_PARAMETER A parameter that was passed to the function
was invalid.

0 SC_OK Success.

68 Constructing clients using the client API library
API functions
ScanClientStreamSendBytes
The ScanClientStreamSendBytes function is used to send chunks of data after
HSCANSTREAM has been initialized with ScanClientStreamStart().

See “ScanClientStreamStart” on page 66.

SC_ERROR ScanClientStreamSendBytes
(

HSCANSTREAM hStream,
LPBYTE lpabyData,
DWORD dwLength

)

ScanClientStreamSendBytes parameters
Table 4-16 lists the parameters that are used.

ScanClientStreamSendBytes return codes
Return codes are listed in Table 4-17. Negative values are warnings. Positive
values are errors.

Table 4-16 ScanClientStreamSendBytes parameters

Parameter Description

hStream The HSCANSTREAM variable, which must be initialized by a call to
ScanClientStreamStart().

lpabyData Pointer to a buffer that contains the next chunk of data to be sent.

dwLength Size, in bytes, of the next chunk of data to be sent.

Table 4-17 ScanClientStreamSendBytes return codes

Value Return code Description

2 SC_SOCKET_FAILURE A socket communications error has
occurred.

1 SC_INVALID_PARAMETER A parameter that was passed to the
function was invalid.

0 SC_OK Success.

69Constructing clients using the client API library
API functions
ScanClientStreamFinish
The ScanClientStreamFinish function must be called after an entire file has been
sent to the Symantec AntiVirus Scan Engine to be scanned using
ScanClientStreamSendBytes().

See “ScanClientStreamStart” on page 66.

SCSCANFILE_RESULT ScanClientStreamFinish
(

HSCANSTREAM hStream,
LPSTR pszOutputFileName,
LPHSCANRESULTS phScanResults

)

ScanClientStreamFinish parameters
Table 4-18 lists the parameters that are used.

Table 4-18 ScanClientStreamFinish parameters

Parameter Description

hStream The HSCANSTREAM variable, which must be initialized by a
call to ScanClientStreamStart().

pszOutputFileName The storage location for the repaired file. (No output file is
created unless the input file is infected and the infection is
repairable.)

This parameter can be one of the following:

■ A null-terminated string that is a path to where the
repaired file is to be stored.

■ A char array at least MAX_STRING long, with the first
byte set to '\0'. The API generates a file name for the
repair file. When the function returns,
pszOutputFileName is set to the name of the repaired
file.

Note: If this parameter is NULL, the API has the Symantec
AntiVirus Scan Engine scan the file for viruses but not
attempt repair. However, this is not the recommended
method for forcing the scan engine to scan files for viruses
but not attempt repair. Set the pszScanPolicy to ScanOnly
instead.

70 Constructing clients using the client API library
API functions
ScanClientStreamFinish return codes
Return codes are listed in Table 4-19. Negative values are warnings. Positive
values are errors.

phScanResults When the function returns, this handle points at a structure
that contains information about any problems (infections)
found during the scan. If none were found, this parameter is
NULL unless the AlwaysReportDefInfo:1 policy is used in the
scan. Information regarding problems is extracted using the
described functions. If this parameter is not NULL, the
memory must be released using ScanResultsFree().

Table 4-19 ScanClientStreamFinish return codes

Value Return code Description

-3 SCSCANFILE_INF_NO_REP The file was infected with a virus, but
no repair was possible.

-1 SCSCANFILE_INF_REPAIRED The file was infected, and repair was
successful.

0 SCSCANFILE_CLEAN No virus was found.

3 SCSCANFILE_FAIL_ABORTED The scan was aborted abnormally.

4 SCSCANFILE_INVALID_PARAM Function was called with an invalid
parameter.

5 SCSCANFILE_FAIL_RECV_FILE An error occurred when attempting to
receive the repaired file.

6 SCSCANFILE_FAIL_MEMORY A memory allocation error has
occurred.

Table 4-18 ScanClientStreamFinish parameters

Parameter Description

71Constructing clients using the client API library
API functions
ScanClientStreamAbort
The ScanClientStreamAbort function is called to abort a scan between calls to
ScanClientStreamStart() and ScanClientStreamFinish().

SC_ERROR ScanClientStreamAbort
(

HSCANSTREAM hStream
)

ScanClientStreamAbort return codes
Return codes are listed in Table 4-20. Negative values are warnings. Positive
values are errors.

7 SCSCANFILE_FAIL_FILE_ACCESS The server couldn’t access the file to be
scanned. This error usually occurs for
LOCAL scans when the file
permissions are wrong or when the file
is not in the path that is specified in the
LocalFileScanDir parameter on the
server. This error can also occur when
the API encounters a problem while
writing repaired file data that was
received from the scan engine to the
output file.

10 SCSCANFILE_ERROR_SCANNING
FILE

An internal server error occurred while
the scan engine was attempting to
repair the file.

15 SCSCANFILE_ABORT_NO_AV_
SCANNING_LICENSE

No valid license for antivirus scanning
functionality is installed.

Table 4-19 ScanClientStreamFinish return codes

Value Return code Description

Table 4-20 ScanClientStreamAbort return codes

Value Return code Description

1 SC_INVALID_PARAMETER A parameter that was passed to the
function was invalid.

0 SC_OK Success.

-1 SC_NULL_PARAMETER A parameter that was passed to the
function is NULL when it shouldn’t be.

72 Constructing clients using the client API library
API functions

Appendix
 A
Using the API

This chapter includes the following topics:

■ About the sample code

■ Sample code

74 Using the API
About the sample code
About the sample code
The sample code shown in the Symantec AntiVirus Scan Engine Software
Developer’s Guide is for convenience. Sample code also is included on the
distribution CD. This sample program demonstrates how use the Symantec
AntiVirus Scan Engine API to scan files.

This example demonstrates the use of both file-based and stream-based scanning.
File-based scanning is enabled by default.

Sample code
The usage and syntax is as follows:

example <Scan Engine ip>:<Scan Engine port> <input file> [<input file>...]

On Solaris, compile the code using code similar to the following:

cc example.cpp libsymcsapi.a -lsocket -lnsl -DUNIX

On Windows, link to the winsock library. For example:

ws2_32.lib

#if defined(WIN32)
#pragma warning(push,3)
#endif

#include <stdio.h>
#include <string>
#include "symcsapi.h"

#if defined(WIN32)
#include <windows.h>
#endif

#if defined(WIN32)
#include <windows.h>
#endif

// Function Prototypes
void print_prob_info(HSCANRESULTS hResults, int iWhichProblem);
int scanfile(HSCANCLIENT scanclient, char *orig_name, char

*actual_name);

int main(int argc, char *argv[])
{

HSCANCLIENT scanclient=NULL;
char pszStartUpString[MAX_STRING];
int i;

#if defined(WIN32)
// start up winsock
WORD wVersionRequested;

75Using the API
Sample code
WSADATA wsaData;
int err;

// Load WinSock, request version 1.0.
wVersionRequested = MAKEWORD(1, 0);
err = WSAStartup(wVersionRequested, &wsaData);
if (err != 0)
{

return 3;// ERROR
}

// Confirm WinSock supports the version we requested.
if (LOBYTE(wsaData.wVersion) != 1 ||

HIBYTE(wsaData.wVersion) != 0)
{

WSACleanup();
return 3;// ERROR

}

#endif // defined(WIN32)

if(argc < 3)
{

printf("Usage: %s <ipaddress>:<port> <input-file> [<input-
file>...]\n", argv[0]);

return 1;
}

sprintf(pszStartUpString, "server:%s", argv[1]);

if(ScanClientStartUp(&scanclient, pszStartUpString) > 0)
{

printf("Error in ScanClientStartUp\n");
return 1;

}

for(i=2; i<argc; i++)
{

printf("============================\n");
printf("Scanning file: %s\n", argv[i]);
printf("============================\n");
scanfile(scanclient, argv[i], argv[i]);

}

ScanClientShutDown(scanclient);

#if defined(WIN32)
if (WSACleanup() == SOCKET_ERROR)
{

// ERROR
}

#endif

return 0;
}

76 Using the API
Sample code
/*
** Scans a file
**
** Parameters:
** scanclient: Scan Engine client connection
** orig_name: Original name of the file
** actual_name: Name of the file on this machine
**
** Returns:
** 1 for success
** 0 for failure
*/
int scanfile(HSCANCLIENT scanclient, char *orig_name, char

*actual_name)
{

HSCANRESULTS results=NULL;
char repair_file[MAX_STRING];
int numproblems=0;

// Set up the buffer to accept the repair filename
repair_file[0] = 0;

#define SCANWHOLEFILE
#if defined(SCANWHOLEFILE)

// Perform the scan
SCSCANFILE_RESULT answer = ScanClientScanFile(scanclient,

orig_name,
actual_name,
repair_file,
"",
&results
);

#else // SCANWHOLEFILE
char sendbuff[8 * 1024];

HSCANSTREAM hScanStream = NULL;
if (SC_OK != ScanClientStreamStart(scanclient, orig_name, "",

&hScanStream))
return 0;

// Open the file and send it
#if defined (WIN32)

HANDLE fd = CreateFile(actual_name, GENERIC_READ, 0, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

if (fd == INVALID_HANDLE_VALUE)
{

ScanClientStreamAbort(hScanStream);
return 0;

}

DWORD iChunkSize;
if (!ReadFile(fd, (void *) sendbuff, sizeof(sendbuff),

&iChunkSize, NULL))
{

77Using the API
Sample code
CloseHandle(fd);
ScanClientStreamAbort(hScanStream);
return 0;

}

if (iChunkSize < 0)
{

CloseHandle(fd);
ScanClientStreamAbort(hScanStream);
return 0;

}

while (iChunkSize > 0)
{

if (SC_OK != ScanClientStreamSendBytes(hScanStream,
(LPBYTE)sendbuff, iChunkSize))

{
CloseHandle(fd);
// Do not call ScanClientStreamAbort here
return 0;

}

// Keep reading the file
if (!ReadFile(fd, (void *) sendbuff, sizeof(sendbuff),

&iChunkSize, NULL))
{

CloseHandle(fd);
ScanClientStreamAbort(hScanStream);
return 0;

}

if (iChunkSize < 0)
{

CloseHandle(fd);
ScanClientStreamAbort(hScanStream):
return 0;

}
}
CloseHandle(fd);

#else // if defined(WIN32)
int fd = open(actual_name, O_RDONLY);
if(fd < 0)
{

ScanClientStreamAbort(hScanStream);
return 0;

}

int iChunkSize = read(fd, sendbuff, sizeof(sendbuff));

if(iChunkSize < 0)
{

close(fd);
ScanClientStreamAbort(hScanStream);
return 0;

}

78 Using the API
Sample code
while (iChunkSize > 0)
{

if (SC_OK != ScanClientStreamSendBytes(hScanStream,
(LPBYTE)sendbuff, iChunkSize))

{
close(fd);
// Do not call ScanClientStreamAbort here
return 0;

}

// Keep reading the file
iChunkSize = read(fd, sendbuff, sizeof(sendbuff));
if(iChunkSize < 0)
{

close(fd);
ScanClientStreamAbort(hScanStream);
return 0;

}
}

close(fd);
#endif // if defined(WIN32)

SCSCANFILE_RESULT answer = ScanClientStreamFinish(hScanStream,
repair_file, &results);

#endif // SCANWHOLEFILE

if(answer > 0)
{

printf("**** ERROR! Couldn't scan file\n");
return 0;

}

switch(answer)
{
case SCSCANFILE_INF_NO_REP:

printf("File is infected and cannot be repaired\n");
break;

case SCSCANFILE_INF_REPAIRED:
printf("File was infected, and has been repaired\n");
break;

case SCSCANFILE_CLEAN:
printf("File is clean\n");
break;

default:
printf("ScanClientScanFile returned an unexpected

value\n");
break;

}

// The results structure will be non-null if a virus was
detected.

if(results)
{

if(strlen(repair_file))

79Using the API
Sample code
{
printf("Repaired file saved as: %s\n", repair_file);

}
else
{

printf("No repair file generated\n");
}

if(ScanResultGetNumProblems(results, &numproblems) > 0)
{

printf("Error getting number of problems\n");
return 2;

}
printf("%s had %d infection(s):\n",actual_name,

numproblems);
}
else
{

numproblems = 0;
}

for(int i=0; i<numproblems; i++)
{

print_prob_info(results, i);
}

// Be sure to free the results when done!
ScanResultsFree(results);

return 1;
}

/*
** Prints scan related information
**
** Parameters:
** hResults: structure containing the scan results
** iWhichProblem: scan file problem ID
*/
void print_prob_info(HSCANRESULTS hResults, int iWhichProblem)
{

char attrib[MAX_STRING];
int attrib_size;
int iDisposition;

attrib_size = MAX_STRING;
ScanResultGetProblem(hResults,

iWhichProblem,
SC_PROBLEM_FILENAME,
attrib,
&attrib_size);

printf("File Name: %s\n", attrib);

attrib_size = MAX_STRING;
ScanResultGetProblem(hResults,

80 Using the API
Sample code
iWhichProblem,
SC_PROBLEM_VIRUSNAME,
attrib,
&attrib_size);

printf("Virus Name: %s\n", attrib);

attrib_size = MAX_STRING;
ScanResultGetProblem(hResults,

iWhichProblem,
SC_PROBLEM_VIRUSID,
attrib,
&attrib_size);

printf("Virus ID: %s\n", attrib);

attrib_size = MAX_STRING;
ScanResultGetProblem(hResults,

iWhichProblem,
SC_PROBLEM_DISPOSITION,
attrib,
&attrib_size);

iDisposition = SC_DECODE_DISPOSITION(attrib);
switch(iDisposition)
{
case SC_DISP_UNREPAIRED:

printf("This infection could not be repaired\n");
break;

case SC_DISP_REPAIRED:
printf("This infection was repaired\n");
break;

case SC_DISP_DELETED:
printf("The file with this infection should be deleted\n");
break;

default:
printf("Unknown Disposition\n");
break;

}

attrib_size = MAX_STRING;
ScanResultGetProblem(hResults,

iWhichProblem,
SC_PROBLEM_DEFINITION_DATE,
attrib,
&attrib_size);

printf("Virus Definitions dated: %s\n", attrib);

attrib_size = MAX_STRING;
ScanResultGetProblem(hResults,

iWhichProblem,
SC_PROBLEM_DEFINITION_REV,
attrib,
&attrib_size);

printf("Virus Definitions Revision: %s\n", attrib);
}

Index
A
access denied message, editing 19
antivirus scanning

getting started 15
load balancing 14
selecting file types 20
setting policies 19, 59
using

API libraries 50
ICAP 32

API functions
about 53
sample code 74
SC_DECODE_DISPOSITION 64
ScanClientScanFile 57
ScanClientShutDown 65
ScanClientStartUp 54
ScanClientStreamAbort 71
ScanClientStreamFinish 69
ScanClientStreamSendBytes 68
ScanClientStreamStart 66
ScanResultGetNumProblems 61
ScanResultGetProblem 62
ScanResultsFree 65

API library
about 12, 50
compiling 50
error handling 53
linking 50

AVSCAN service 33

B
bind address, configuring for ICAP 19
blocking policy 22

C
cache servers 12

client applications
about 11
configuring

using API libraries 50
using ICAP 32

deploying files 14
code samples, for API library 74
communications protocol

configuring 20
selecting 18

compiling API libraries 50
connectors. See client applications

D
deployment 14

E
encapsulation 31
error codes

See also API functions
for ICAP RESPMOD method 40

error handling 53
exceptions 53
exclusion lists 20

F
file lists 20
functions (API), list of 53

file-based scanning 54
stream-based scanning 54

H
header fields, ICAP

general 29
OPTIONS responses 35
request messages 30
RESPMOD responses 41

82 Index
I
ICAP

about 11, 28
API libraries 50
configuring scan engine for 18
querying services 33
sending files

for preview 36
for scanning 32, 36

specifying what to scan 21
ICAP messages

about 29
encapsulation 31
general headers 29
request

headers 30
messages 29

response
headers 41
messages 31, 38

URI 36
ICAP methods

about 28
OPTIONS 33
RESPMOD 36

ICAP response, changing 25
inclusion lists 20
integrations, custom

about 11, 18
getting started 15

Internet Content Adaptation Protocol. See ICAP

L
licenses 13, 41
linking, API libraries 50
load balancing

about 14
ScanClientScanFile 57

loopback interface 19

M
makefile

Red Hat Linux 53
Solaris 52

O
OPTIONS method

about 28
querying services 33
response codes 34
response headers 35
samples

request 33
response 33

P
parameters. See API functions
policies. See scan policies 19
port number, specifying 19
preview 36
protocol

configuring 20
selecting 18

proxy servers 12

R
RESPMOD method

about 28
response codes 39
response headers 41
response messages 38
samples

request 39
response 43

response codes, ICAP
about 39
for OPTIONS requests 34
for RESPMOD requests 39

response modification. See RESPMOD method
return codes. See API functions

S
SC_DECODE_DISPOSITION 64
scan engine

about 10
configuring for ICAP 18
load balancing 14

scan engine services, querying in ICAP 33
scan options. See antivirus scanning

83Index
scan policies
configuring, in scan engine 19
setting, using API 59

ScanClientScanFile 57, 61
ScanClientShutDown 65
ScanClientStartUp 54
ScanClientStreamAbort 71
ScanClientStreamFinish 69
ScanClientStreamSendBytes 68
ScanClientStreamStart 66
ScanResultGetNumProblems 61
ScanResultGetProblem 62
ScanResultsFree 65
stream scanning 67

U
Uniform Resource Identifier. See URI
URI

for querying AVSCAN service 33
for scan requests 36
syntax 30

V
virus definitions, licensing 13

W
winsock

initalizing 51
shutting down 52

	Symantec AntiVirus™ Scan Engine Software Developer’s Guide
	Contents
	1. Getting started
	About the Symantec AntiVirus Scan Engine
	About the software developer’s guide
	What’s new in version 4.1.0 of the software developer’s guide
	Integrating with the Symantec AntiVirus Scan Engine
	About ICAP
	About the API
	About the change from the native protocol to ICAP
	About other protocols

	About licensing
	Considerations for implementation
	Deciding how to implement scanning
	Maximizing performance
	About automatic load balancing

	Where to start

	2. Configuring the Symantec AntiVirus Scan Engine for custom integrations
	Considerations for custom integration
	Configuring the scan engine to use ICAP
	Specifying file types to scan
	Changing an ICAP response

	3. Constructing clients using ICAP 1.0
	How ICAP works
	Finding more information on ICAP
	About ICAP messages
	About request messages
	About response messages
	About encapsulated messages

	About the antivirus scanning process
	Determining which services are supported
	Querying the AVSCAN service
	OPTIONS response codes
	OPTIONS response headers

	Sending files for scanning
	Sending portions of files for preview
	Allowing no content responses
	Interpreting RESPMOD response messages

	4. Constructing clients using the client API library
	General procedure for scanning
	Compiling and linking
	Windows 2000 Server/Advanced Server
	Solaris
	Red Hat Linux
	Exceptions and error handling

	API functions
	File-based scanning
	Stream-based scanning
	ScanClientStartUp
	ScanClientScanFile
	ScanResultGetNumProblems
	ScanResultGetProblem
	SC_DECODE_DISPOSITION
	ScanResultsFree
	ScanClientShutDown
	ScanClientStreamStart
	ScanClientStreamSendBytes
	ScanClientStreamFinish
	ScanClientStreamAbort

	A. Using the API
	About the sample code
	Sample code

	Index

